間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

標本平均まわりの3次モーメントの和

“標本平均\(\overline{X}\)まわりの3次モーメントの和”を“母平均\(\mu\)まわりの3次モーメント\(\mu_3\)”で表す

$$\begin{array}{rcl} \displaystyle \sum_{k=1}^{n}E\left[(X_k-\overline{X})^3\right] &=&\displaystyle E\left[\sum_{k=1}^{n}(X_k-\overline{X})^3\right]\\ &&\displaystyle\,\dotso\,E\left[X\right]+E\left[Y\right]=E\left[X+Y\right]\\ &=&\displaystyle E\left[\sum_{k=1}^{n}\left\{ \displaystyle \left( X_k-\mu \right) \displaystyle -\left( \overline{X}-\mu \right) \displaystyle \right\}^3\right]\\ &&\displaystyle\,\dotso\,(A-B)=(A-C)-(B-C)\\ &=&\displaystyle E\left[\sum_{k=1}^{n}\left\{ \displaystyle \left( X_k-\mu \right)^3 \displaystyle -3\left( X_k-\mu \right)^2\left( \overline{X}-\mu \right) \displaystyle +3\left( X_k-\mu \right)\left( \overline{X}-\mu \right)^2 \displaystyle - \left( \overline{X}-\mu \right)^3 \displaystyle \right\}\right]\\ &&\displaystyle\,\dotso\,(A-B)^3=A^3-3A^2B+3AB^2-B^3\\ &=&\displaystyle E\left[ \displaystyle \sum_{k=1}^{n}\left( X_k-\mu \right)^3 \displaystyle -3\left\{ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2 \right\} \displaystyle +3\left\{ \left( \overline{X}-\mu \right)^2 \sum_{k=1}^{n} \left( X_k-\mu \right) \right\} \displaystyle - \left( \overline{X}-\mu \right)^3 \sum_{k=1}^{n}1 \displaystyle \right]\\ &&\displaystyle\,\dotso\,\sum_{k=1}^{n} (X+Y)=\sum_{k=1}^{n} X+\sum_{k=1}^{n} Y\\ &=&\displaystyle E\left[\sum_{k=1}^{n}\left( X_k-\mu \right)^3\right] \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2 \right] \displaystyle +3E\left[ \left( \overline{X}-\mu \right)^2 \sum_{k=1}^{n} \left( X_k-\mu \right) \right] \displaystyle - E\left[\left( \overline{X}-\mu \right)^3 \sum_{k=1}^{n}1\right] \displaystyle \\ &&\displaystyle\,\dotso\,E\left[X+Y\right]=E\left[X\right]+E\left[Y\right]\\ &=&\displaystyle \sum_{k=1}^{n}E\left[\left( X_k-\mu \right)^3\right] \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2 \right] \displaystyle +3E\left[ \left( \overline{X}-\mu \right)^2 \left( \sum_{k=1}^{n}X_k - \sum_{k=1}^{n}\mu \right) \right] \displaystyle - E\left[n\left( \overline{X}-\mu \right)^3\right] \displaystyle \\ &&\displaystyle\,\dotso\, \displaystyle E\left[X+Y\right]=E\left[X\right]+E\left[Y\right] ,\quad \sum_{k=1}^{n} (X+Y)=\sum_{k=1}^{n} X+\sum_{k=1}^{n} Y\\ &=&\displaystyle \sum_{k=1}^{n}E\left[\left( X_k-\mu \right)^3\right] \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2 \right] \displaystyle +3E\left[ \left( \overline{X}-\mu \right)^2 \left( n\overline{X} - n\mu \right) \right] \displaystyle - E\left[n\left( \overline{X}-\mu \right)^3\right] \displaystyle \\ &&\displaystyle\,\dotso\, \sum_{k=1}^{n}X_k=n\overline{X} ,\quad \sum_{k=1}^{n}\mu=n\mu\\ &=&\displaystyle n\mu_3 \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2\right] \displaystyle +3E\left[ n\left( \overline{X}-\mu \right)^3\right] \displaystyle -nE\left[\left( \overline{X}-\mu \right)^3\right] \displaystyle \\ &&\displaystyle\,\dotso\, \href{https://shikitenkai.blogspot.com/2019/07/mu-sigma2beta1.html}{E\left[\left( X_k-\mu \right)^3\right]=\mu_3}\\ &=&\displaystyle n\mu_3 \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2\right] \displaystyle +3nE\left[ \left( \overline{X}-\mu \right)^3\right] \displaystyle - nE\left[\left( \overline{X}-\mu \right)^3\right] \displaystyle \\ &=&\displaystyle n\mu_3 \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2\right] \displaystyle +2nE\left[ \left( \overline{X}-\mu \right)^3\right] \displaystyle \\ &=&\displaystyle n\mu_3 \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2\right] \displaystyle +2n\frac{\mu_3}{n^2} \displaystyle \\ &&\displaystyle\,\dotso\, \href{https://shikitenkai.blogspot.com/2019/07/overlinexmu3.html}{E\left[\left( \overline{X}-\mu \right)^3\right]=\frac{\mu_3}{n^2}}\\ &=&\displaystyle n\mu_3 \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2\right] \displaystyle +2\frac{\mu_3}{n} \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k-\mu \right)^2\right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \sum_{k=1}^{n} \left( X_k^2-2\mu X_k+\mu^2 \right) \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \left( \sum_{k=1}^{n}X_k^2-2\mu \sum_{k=1}^{n}X_k+\mu^2\sum_{k=1}^{n}1 \right) \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \left( \overline{X}-\mu \right) \left( \sum_{k=1}^{n}X_k^2-2\mu n\overline{X}+n\mu^2 \right) \right] \displaystyle \\ &&\displaystyle\,\dotso\, \sum_{k=1}^{n}X_k=n\overline{X} ,\quad \sum_{k=1}^{n}1=n\\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\left( \sum_{k=1}^{n}X_k^2- 2\mu n\overline{X}+ n\mu^2 \right) \displaystyle -\mu\left( \sum_{k=1}^{n}X_k^2-2\mu n\overline{X}+ n\mu^2 \right) \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \left( \overline{X}\sum_{k=1}^{n}X_k^2-2n\mu \overline{X}^2+ n\mu^2\overline{X} \right) \displaystyle -\left( \mu\sum_{k=1}^{n}X_k^2-2\mu^2 n\overline{X}+n\mu^3 \right) \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\sum_{k=1}^{n}X_k^2-2n\mu \overline{X}^2+ n\mu^2\overline{X} \displaystyle -\mu\sum_{k=1}^{n}X_k^2+2\mu^2 n\overline{X}-n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\sum_{k=1}^{n}X_k^2 \displaystyle -2n\mu \overline{X}^2- \mu \sum_{k=1}^{n}X_k^2 \displaystyle + n\mu^2\overline{X} +2\mu^2 n\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\sum_{k=1}^{n}X_k^2 \displaystyle - \mu \left(2n \overline{X}^2+\sum_{k=1}^{n}X_k^2\right) \displaystyle + n\mu^2\left( \overline{X} +2 \overline{X}\right) \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\sum_{k=1}^{n}X_k^2 \displaystyle - \mu\left(2n \overline{X}^2+\sum_{k=1}^{n}X_k^2\right) \displaystyle + 3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &&\displaystyle\,\dotso\, \displaystyle \href{https://shikitenkai.blogspot.com/2019/07/blog-post_41.html}{\sum_{k=1}^{n}X_k^2=\sum_{k=1}^{n}(X_k-\overline{X})^2+n\overline{X}^2}\\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\,\left(\sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2+n\overline{X}^2\right) \displaystyle - \mu \left(2n \overline{X}^2+\left(\sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2+n\overline{X}^2\right)\right) \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \overline{X}\sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle +n\overline{X}^3 \displaystyle -2n\mu \overline{X}^2 \displaystyle -\mu\sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle - n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \left( \overline{X}-\mu \right) \sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle +n\overline{X}^3 \displaystyle -3n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle \left( \overline{X}-\mu \right) \sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle \right] \displaystyle -3E\left[ \displaystyle n\overline{X}^3 \displaystyle -3n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[\overline{X}-\mu \right] \displaystyle \sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle -3E\left[ \displaystyle n\overline{X}^3 \displaystyle -3n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3\left(E\left[\overline{X} \right]-\mu\right) \displaystyle \sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle -3E\left[ \displaystyle n\overline{X}^3 \displaystyle -3n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3\left(\mu-\mu\right) \displaystyle \sum_{k=1}^{n}\left(X_k-\overline{X}\right)^2 \displaystyle -3E\left[ \displaystyle n\overline{X}^3 \displaystyle -3n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle n\overline{X}^3 \displaystyle -3n\mu \overline{X}^2 \displaystyle +3n\mu^2\overline{X} \displaystyle -n\mu^3 \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[n \displaystyle \left(\overline{X}^3 \displaystyle -3\mu \overline{X}^2 \displaystyle +3\mu^2\overline{X} \displaystyle -\mu^3\right) \displaystyle \right] \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3E\left[ \displaystyle n\left(\overline{X}-\mu\right)^3 \displaystyle \right] \displaystyle \\ &&\displaystyle\,\dotso\,A^3-3A^2B+3AB^2-B^3=(A-B)^3\\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3nE\left[ \displaystyle \left(\overline{X}-\mu\right)^3 \displaystyle \right] \displaystyle \\ &&\displaystyle\,\dotso\,E[cX]=cE[X]\\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3n\frac{\mu_3}{n^2} \displaystyle \\ &&\displaystyle\,\dotso\, \href{https://shikitenkai.blogspot.com/2019/07/overlinexmu3.html}{E\left[\left( \overline{X}-\mu \right)^3\right]=\frac{\mu_3}{n^2}}\\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} \right) \displaystyle -3\frac{\mu_3}{n} \displaystyle \\ &=&\displaystyle \mu_3\left( \frac{n^2+2}{n} -3\frac{n}{n}\right) \displaystyle \\ &=&\displaystyle \mu_3\frac{n^2-3n+2}{n}\\ &=&\displaystyle \mu_3\frac{(n-1)(n-2)}{n}\\ \end{array}$$

“標本平均\(\overline{X}\)まわりの3次モーメントの和”から“母平均\(\mu\)まわりの3次モーメント\(\mu_3\)”を推定する\(\hat{\mu}_3\)

$$\begin{array}{rcl} \displaystyle \hat{\mu}_3 &=&\displaystyle \frac{n}{(n-1)(n-2)}E\left[\sum_{k=1}^{n}(X_k-\overline{X})^3\right]\\ \end{array}$$

0 件のコメント:

コメントを投稿