不偏分散の期待値
$$\begin{array}{rclcl}
\hat{\sigma}^2
&=& \href{https://shikitenkai.blogspot.com/2019/07/specimen-random-variable.html}{\displaystyle \frac{1}{n-1}\sum_{k=1}^{n}\left(
\displaystyle X_k - \overline{X}
\displaystyle \right)^2}\,\dotso\,不偏分散(unbiased \, variance)\\
E\left[\hat{\sigma}^2\right]
&=&E\left[ \displaystyle\frac{1}{n-1}\sum_{k=1}^{n} \left(X_k -\overline{X}\right)^2 \right]\\
&=&\displaystyle\frac{1}{n-1}E\left[\sum_{k=1}^{n} \left(X_k -\overline{X}\right)^2 \right]\\
&=&\displaystyle\frac{1}{n-1}\left(n-1\right)\sigma^2
\,\dotso\,\displaystyle \href{https://shikitenkai.blogspot.com/2019/07/overlinex2.html}{E\left[\sum_{k=1}^{n} \left(X_k -\overline{X}\right)^2 \right]=\left(n-1\right)\sigma^2}\\
&=&\displaystyle\sigma^2\\
\end{array}$$
0 件のコメント:
コメントを投稿