$$\begin{array}{rcl}
\displaystyle M_X^{(m)}(0)&\equiv&\frac{ \mathrm{d}^m }{ \mathrm{d}^m t } M_X(t)|_{t=0}\\
&=&\displaystyle E[X^m\mathrm{e}^{tX}]|_{t=0}\\
&=&\displaystyle E[X^m]\\
\end{array}$$
積率母凾数の一階微分
$$\begin{array}{rcl}
\displaystyle M_X^{(1)}
&=& \displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\left\{
\displaystyle \href{https://shikitenkai.blogspot.com/2019/07/continuous-random-variable-uniform.html}{\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t(b-a)}}
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{b-a}
\displaystyle \left\{
\displaystyle \left(t^{-1}\right)'\left(\mathrm{e}^{tb}-\mathrm{e}^{ta}\right)
\displaystyle +\left(t^{-1}\right)\left(\mathrm{e}^{tb}-\mathrm{e}^{ta}\right)'
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{b-a}
\displaystyle \left\{
\displaystyle \left(-t^{-2}\right)\left(\mathrm{e}^{tb}-\mathrm{e}^{ta}\right)
\displaystyle +\left(t^{-1}\right)\left(b\mathrm{e}^{tb}-a\mathrm{e}^{ta}\right)
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{b-a}
\displaystyle \left(
\displaystyle -\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t^2}
\displaystyle +\frac{b\mathrm{e}^{tb}-a\mathrm{e}^{ta}}{t}
\displaystyle \right)\\
&=& \displaystyle \frac{1}{b-a}
\displaystyle \left\{
\displaystyle -\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t^2}
\displaystyle +\frac{(b\mathrm{e}^{tb}-a\mathrm{e}^{ta})t}{t^2}
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{b-a}
\displaystyle \left(
\displaystyle \frac{tb\mathrm{e}^{tb}-\mathrm{e}^{tb}-ta\mathrm{e}^{ta}+\mathrm{e}^{ta}}{t^2}
\displaystyle \right)\\
&=& \displaystyle \frac{1}{t^2(b-a)}
\displaystyle \left\{
\displaystyle (tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}
\displaystyle \right\}\\
&=& \displaystyle \frac{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}}{t^2(b-a)}\\
\end{array}$$
原点周りの一次モーメント=期待値
$$\begin{array}{rcl}
\displaystyle E[X]&=&\displaystyle M_X^{(1)}(0)\\
&=&\displaystyle \lim_{t \to 0}\left\{
\displaystyle \frac{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}}{t^2(b-a)}
\displaystyle \right\}\,\dotso\,0を代入すると分母が0になってしまうので極限で考える.\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^2(b-a)}\left\{
\displaystyle (tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^2(b-a)}\left\{
\displaystyle (tb-1)\left(\frac{(tb)^0}{0!}+\frac{(tb)^1}{1!}+\frac{(tb)^2}{2!}\right)
\displaystyle -(ta-1)\left(\frac{(ta)^0}{0!}+\frac{(ta)^1}{1!}+\frac{(ta)^2}{2!}\right)
\displaystyle \right\}
\displaystyle \right]\\
&& \,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/blog-post.html}{\mathrm{e}^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}=\frac{x^0}{0!}+\frac{x^1}{1!}+\frac{x^2}{2!}+\dotsb}
(マクローリン展開), t^2が分母にあるのでt^3の項以上は分子にtが残ることになるのでt^2の項までで計算を進める.\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^2(b-a)}\left\{
\displaystyle (tb-1)\left(1+tb+t^2\frac{b^2}{2}\right)
\displaystyle -(ta-1)\left(1+ta+t^2\frac{a^2}{2}\right)
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^2(b-a)}\left[
\displaystyle \left\{\left(tb+t^2b^2+t^3\frac{b^3}{2}\right)-\left(1+tb+t^2\frac{b^2}{2}\right)\right\}
\displaystyle -\left\{\left(ta+t^2a^2+t^3\frac{a^3}{2}\right)-\left(1+ta+t^2\frac{a^2}{2}\right)\right\}
\displaystyle \right]
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^2(b-a)}\left\{
\displaystyle \left(-1+t(b-b)+t^2(b^2-\frac{b^2}{2})+t^3\frac{b^3}{2}\right)
\displaystyle -\left(-1+t(a-a)+t^2(a^2-\frac{a^2}{2})+t^3\frac{a^3}{2}\right)
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^2(b-a)}\left\{
\displaystyle \left(-1+t^2\frac{b^2}{2}+t^3\frac{b^3}{2}\right)
\displaystyle -\left(-1+t^2\frac{a^2}{2}+t^3\frac{a^3}{2}\right)
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left\{
\displaystyle \frac{1}{t^2(b-a)}\left(
\displaystyle t^2\frac{b^2-a^2}{2}
\displaystyle +t^3\frac{b^3-a^3}{2}
\displaystyle \right)
\displaystyle \right\}\\
&=&\displaystyle \lim_{t \to 0} \left[\frac{1}{t^2(b-a)}\left\{
\displaystyle t^2 \frac{ (b-a)(b+a) }{2}
\displaystyle +t^3 \frac{ (b-a)(b^2+ab+a^2) }{2}
\displaystyle \right\}\right]
\,\dotso\,b^2-a^2=(b-a)(b+a),\,b^3-a^3=(b-a)(b^2+ab+a^2)\\
&=&\displaystyle \lim_{t \to 0}
\displaystyle \left\{
\displaystyle \frac{ (b+a) }{2}
\displaystyle +t \frac{ (b^2+ab+a^2) }{2}
\displaystyle \right\}\\
&=&\displaystyle \frac{b+a}{2}=\frac{a+b}{2}
\,\dotso\,tが分子にある(掛けられている)項は全て0.\\
\end{array}$$
0 件のコメント:
コメントを投稿