$$\begin{array}{rcl}
\displaystyle f(x) &=& \displaystyle \sum_{k=0}^{\infty}\frac{f^{(k)}(a)}{x!}(x-a)^k\,\dotso\,a点まわりのテイラー展開\\
&=& \displaystyle \frac{1}{0!}f^{(0)}(a)(x-a)^0+\frac{1}{1!}f^{(1)}(a)(x-a)^1+\frac{1}{2!}f^{(2)}(a)(x-a)^2+\dotsb\\
\end{array}$$
\(e^x\)のマクローリン展開
$$\begin{array}{rcl}
\displaystyle \mathrm{e}^x
&=& \displaystyle \sum_{k=0}^{\infty}\frac{1}{k!}\left\{\left(\frac{\mathrm{d}^k}{\mathrm{d}x^k}\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^k
\,\dotso\,0点まわりのテイラー展開(Taylor\,series)=マクローリン展開(Maclaurin\,expansion)\\
&=& \displaystyle \frac{1}{0!}\left\{\left(\frac{\mathrm{d}^0}{\mathrm{d}x^0}\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^0
\displaystyle +\frac{1}{1!}\left\{\left(\frac{\mathrm{d}^1}{\mathrm{d}x^1}\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^1
\displaystyle +\frac{1}{2!}\left\{\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2}\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^2
\displaystyle +\dotsb\\
&=& \displaystyle \frac{1}{0!}\left\{\left(\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^0
\displaystyle +\frac{1}{1!}\left\{\left(\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^1
\displaystyle +\frac{1}{2!}\left\{\left(\mathrm{e}^x\right)|_{x=0}\right\}(x-0)^2
\displaystyle +\dotsb\\
&=& \displaystyle \frac{1}{0!}\,1\,x^0
\displaystyle +\frac{1}{1!}\,1\,x^1
\displaystyle +\frac{1}{2!}\,1\,x^2
\displaystyle +\dotsb
\,\dotso\,a^0=1\\
&=& \displaystyle \sum_{k=0}^{\infty}\frac{1}{k!}x^k\\
&=& \displaystyle \sum_{k=0}^{\infty}\frac{x^k}{k!}\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle \sum_{k=0}^{\infty}\frac{x^k}{k!}&=&\displaystyle \mathrm{e}^x\\
\displaystyle \sum_{k=0}^{\infty}\frac{1}{k!}=\sum_{k=0}^{\infty}\frac{1^k}{k!}&=&\displaystyle \mathrm{e}^1=\mathrm{e}\,\dotso\,x=1\\
\end{array}$$
\(e^{Cx}\)のマクローリン展開
$$\begin{array}{rcl}
\displaystyle \mathrm{e}^{Cx}
&=& \displaystyle \sum_{k=0}^{\infty}\frac{1}{k!}\left\{\left(\frac{\mathrm{d}^k}{\mathrm{d}x^k}\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^k
\,\dotso\,0点まわりのテイラー展開(Taylor\,series)=マクローリン展開(Maclaurin\,expansion)\\
&=& \displaystyle \frac{1}{0!}\left\{\left(\frac{\mathrm{d}^0}{\mathrm{d}x^0}\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^0
\displaystyle +\frac{1}{1!}\left\{\left(\frac{\mathrm{d}^1}{\mathrm{d}x^1}\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^1
\displaystyle +\frac{1}{2!}\left\{\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2}\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^2
\displaystyle +\dotsb\\
&=& \displaystyle \frac{1}{0!}\left\{\left(\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^0
\displaystyle +\frac{1}{1!}\left\{\left(C\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^1
\displaystyle +\frac{1}{2!}\left\{\left(C^2\mathrm{e}^{Cx}\right)|_{x=0}\right\}(x-0)^2
\displaystyle +\dotsb\\
&=& \displaystyle \frac{1}{0!}\,1\,x^0
\displaystyle +\frac{1}{1!}\,C\,x^1
\displaystyle +\frac{1}{2!}\,C^2\,x^2
\displaystyle +\dotsb
\,\dotso\,a^0=1\\
&=& \displaystyle \frac{1}{0!}\,C^0\,x^0
\displaystyle +\frac{1}{1!}\,C^1\,x^1
\displaystyle +\frac{1}{2!}\,C^2\,x^2
\displaystyle +\dotsb
\,\dotso\,a^0=1\\
&=& \displaystyle \sum_{k=0}^{\infty}\frac{(Cx)^k}{k!}\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle \sum_{k=0}^{\infty}\frac{(Cx)^k}{k!} &=& \mathrm{e}^{Cx}\\
\end{array}$$
0 件のコメント:
コメントを投稿