角度\(\alpha\)と角度\(\beta\)の回転行列を掛ける
$$\begin{array}{rcl}
\begin{pmatrix}
cos(\alpha) & -sin(\alpha) \\
sin(\alpha) & cos(\alpha) \\
\end{pmatrix}
\begin{pmatrix}
cos(\beta) & -sin(\beta) \\
sin(\beta) & cos(\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}
&=&
\begin{pmatrix}
cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta) & -cos(\alpha)sin(\beta)-sin(\alpha)cos(\beta) \\
sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta) & -sin(\alpha)sin(\beta)+cos(\alpha)cos(\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\\
&=&
\begin{pmatrix}
cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta) & -(sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta)) \\
sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta) & -sin(\alpha)sin(\beta)+cos(\alpha)cos(\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\\
&=&
\begin{pmatrix}
cos(\alpha+\beta) & -sin(\alpha+\beta) \\
sin(\alpha+\beta) & cos(\alpha+\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\,\dotso\,これが角度(\alpha+\beta)の回転行列と等しい.\\
\end{array}$$
対応する要素同士が加法定理となる.
$$\begin{array}{rcl}
cos(\alpha+\beta)&=&cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)\\
sin(\alpha+\beta)&=&sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta)\\
\end{array}$$
角度\(\alpha\)と角度\(-\beta\)の回転行列を掛ける
$$\begin{array}{rcl}
\begin{pmatrix}
cos(\alpha) & -sin(\alpha) \\
sin(\alpha) & cos(\alpha) \\
\end{pmatrix}
\begin{pmatrix}
cos(-\beta) & -sin(-\beta) \\
sin(-\beta) & cos(-\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}
&=&
\begin{pmatrix}
cos(\alpha)cos(-\beta)-sin(\alpha)sin(-\beta) & -cos(\alpha)sin(-\beta)-sin(\alpha)cos(-\beta) \\
sin(\alpha)cos(-\beta)+cos(\alpha)sin(-\beta) & -sin(\alpha)sin(-\beta)+cos(\alpha)cos(-\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\\
&=&
\begin{pmatrix}
cos(\alpha)cos(\beta)+sin(\alpha)sin(\beta) & cos(\alpha)sin(\beta)-sin(\alpha)cos(\beta) \\
sin(\alpha)cos(\beta)-cos(\alpha)sin(\beta) & sin(\alpha)sin(\beta)+cos(\alpha)cos(\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\,\dotso\,cos(-\beta)=cos(\beta), sin(-\beta)=-sin(\beta)を適用.\\
&=&
\begin{pmatrix}
cos(\alpha)cos(\beta)+sin(\alpha)sin(\beta) & -(sin(\alpha)cos(\beta)-cos(\alpha)sin(\beta)) \\
sin(\alpha)cos(\beta)-cos(\alpha)sin(\beta) & cos(\alpha)cos(\beta)+sin(\alpha)sin(\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\\
&=&
\begin{pmatrix}
cos(\alpha-\beta) & -sin(\alpha-\beta) \\
sin(\alpha-\beta) & cos(\alpha-\beta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\,\dotso\,これが角度(\alpha-\beta)の回転行列と等しい.\\
\end{array}$$
$$\begin{array}{rcl}
cos(\alpha -\beta)&=&cos(\alpha)cos(\beta)+sin(\alpha)sin(\beta)\\
sin(\alpha-\beta)&=&sin(\alpha)cos(\beta)-cos(\alpha)sin(\beta)\\
\end{array}$$
角度\(\alpha\)と角度\(\beta\)が一致(\(\alpha=\beta=\theta\))
$$\begin{array}{rcl}
\begin{pmatrix}
cos(\theta) & -sin(\theta) \\
sin(\theta) & cos(\theta) \\
\end{pmatrix}
\begin{pmatrix}
cos(\theta) & -sin(\theta) \\
sin(\theta) & cos(\theta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}
&=&
\begin{pmatrix}
cos(\theta)cos(\theta)-sin(\theta)sin(\theta) & -cos(\theta)sin(\theta)-sin(\theta)cos(\theta) \\
sin(\theta)cos(\theta)+cos(\theta)sin(\theta) & -sin(\theta)sin(\theta)+cos(\theta)cos(\theta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\\
&=&
\begin{pmatrix}
cos(\theta)^2-sin(\theta)^2 & -2sin(\theta)cos(\theta) \\
2sin(\theta)cos(\theta) & cos(\theta)^2-sin(\theta)^2 \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\\
&=&
\begin{pmatrix}
cos(2\theta) & -sin(2\theta) \\
sin(2\theta) & cos(2\theta) \\
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}\,\dotso\,これが角度(2\theta)の回転行列と等しい.\\
\end{array}$$
対応する要素同士が倍角公式となる.
$$\begin{array}{rcl}
cos(2\theta)&=&cos(\theta)^2-sin(\theta)^2\\
sin(2\theta)&=&2sin(\theta)cos(\theta)\\
\end{array}$$
0 件のコメント:
コメントを投稿