ポアソン分布
$$\begin{array}{rcl}
\displaystyle Po(\lambda)&=&\displaystyle \frac{\lambda^{x}}{x!}\mathrm{e}^{-\lambda}\\
\end{array}$$
積率母凾数
$$\begin{array}{rcl}
\displaystyle M_X(t)&\equiv&\displaystyle E[\mathrm{e}^{tX}]\\
&=&\displaystyle \sum_{x=0}^{\infty}(\mathrm{e}^{tx})\frac{\lambda^{x}}{x!}\mathrm{e}^{-\lambda}\\
&=&\displaystyle \mathrm{e}^{-\lambda}\sum_{x=0}^{\infty}(\mathrm{e}^{tx})\frac{\lambda^{x}}{x!}\\
&=&\displaystyle \mathrm{e}^{-\lambda}\sum_{x=0}^{\infty}\frac{\mathrm{e}^{tx}\lambda^{x}}{x!}\\
&=&\displaystyle \mathrm{e}^{-\lambda}\sum_{x=0}^{\infty}\frac{(\mathrm{e}^{t}\lambda)^{x}}{x!}\\
&=&\displaystyle \mathrm{e}^{-\lambda}\mathrm{e}^{\mathrm{e}^{t}\lambda}
\,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/blog-post.html}{\sum_{x=0}^{\infty}\frac{a^{x}}{x!}=\mathrm{e}^a}\\
&=&\displaystyle \mathrm{e}^{\mathrm{e}^{t}\lambda-\lambda}=\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)}
\end{array}$$
期待値・分散
$$\begin{array}{rcl}
\displaystyle M_X^{(m)}(0)&\equiv&\frac{ \mathrm{d}^m }{ \mathrm{d}^m t } M_x(t)|_{t=0}\\
&=&\displaystyle E[X^m\mathrm{e}^{tX}]|_{t=0}\\
&=&\displaystyle E[X^m]\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle E[X]&=&\displaystyle M_X^{(1)}(0)\\
&=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t }(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)}) \right\}|_{t=0}\\
&=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} s }(\mathrm{e}^{s})\frac{ \mathrm{d}s}{ \mathrm{d}t} \right\}|_{t=0}
\,\dotso\,s=\lambda(\mathrm{e}^{t}-1),\frac{ \mathrm{d}s}{ \mathrm{d}t}=\lambda\mathrm{e}^{t}\\
&=&\displaystyle \left\{ (\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)})(\lambda\mathrm{e}^{t}) \right\}|_{t=0}
\,\dotso\,\frac{ \mathrm{d} }{ \mathrm{d} x }\mathrm{e}^{x}=\mathrm{e}^{x}\\
&=&\displaystyle \left\{ \lambda(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)+t}) \right\}|_{t=0}\\
&=&\displaystyle \lambda(\mathrm{e}^{\lambda(\mathrm{e}^{0}-1)+0})\\
&=&\displaystyle \lambda\mathrm{e}^0
\,\dotso\,a^0=1\\
&=&\lambda
\,\dotso\,a^0=1\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle E[X^2]&=&\displaystyle M_X^{(2)}(0)\\
&=&\displaystyle \left\{ \frac{ \mathrm{d}^2 }{ \mathrm{d} t^2 }(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)}) \right\}|_{t=0}\\
&=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t } \lambda(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)+t}) \right\}|_{t=0}
\,\dotso\,E[X]の展開から.\\
&=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} s }(\lambda\mathrm{e}^{s})\frac{ \mathrm{d}s}{ \mathrm{d}t} \right\}|_{t=0}
\,\dotso\,s=\lambda(\mathrm{e}^{t}-1)+t,\frac{ \mathrm{d}s}{ \mathrm{d}t}=\lambda\mathrm{e}^{t}+1\\
&=&\displaystyle \left\{ (\lambda\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)+1})(\lambda\mathrm{e}^{t}+1) \right\}|_{t=0}
\,\dotso\,\frac{ \mathrm{d} }{ \mathrm{d} x }C\mathrm{e}^{x}=C\mathrm{e}^{x}\\
&=&\displaystyle (\lambda\mathrm{e}^{\lambda(\mathrm{e}^{0}-1)+1})(\lambda\mathrm{e}^{0}+1)\\
&=&\displaystyle \lambda\mathrm{e}^0(\lambda+1)
\,\dotso\,a^0=1\\
&=&\lambda(\lambda+1)
\,\dotso\,a^0=1\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle V[X]&=&\displaystyle E[X^2]-E[X]^2\\
&=&\lambda(\lambda+1)-\lambda^2\\
&=&\lambda^2+\lambda-\lambda^2\\
&=&\lambda\\
\end{array}$$
0 件のコメント:
コメントを投稿