正規分布
$$\begin{array}{rcl}
N(\mu, \sigma^2)&=&\frac{1}{\sqrt{2\pi \sigma^2}}\mathrm{e}^{\frac{-(x-\mu)^2}{2\sigma^2}}
\end{array}$$
積率母凾数
$$\begin{array}{rcl}
\displaystyle M_X(t)&\equiv&\displaystyle E[\mathrm{e}^{tX}]\\
&=&\displaystyle \int_{-\infty}^{\infty}(\mathrm{e}^{tx})\frac{1}{\sqrt{2\pi \sigma^2}}\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}(\mathrm{e}^{tx})\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}+tx} \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}\mathrm{e}^{-\frac{(x-\mu)^2+(2\sigma^2)(tx)}{2\sigma^2}} \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}\mathrm{e}^{-\frac{x^2-2x\mu+\mu^2-2x\sigma^2t}{2\sigma^2}} \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}
\displaystyle \mathrm{e}^{-\frac{x^2-2x\mu+\mu^2-2x\sigma^2t}{2\sigma^2}-\frac{2\mu\sigma^2 t+\sigma^4t^2}{2\sigma^2}+\frac{2\mu\sigma^2 t+\sigma^4t^2}{2\sigma^2}}
\displaystyle \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}
\displaystyle \mathrm{e}^{-\frac{x^2-2x\mu+\mu^2-2x\sigma^2t+2\mu\sigma^2 t+\sigma^4t^2}{2\sigma^2}+\frac{2\mu\sigma^2 t+\sigma^4t^2}{2\sigma^2}}
\displaystyle \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}
\displaystyle \mathrm{e}^{-\frac{(x-\mu-\sigma^2t)^2}{2\sigma^2}+\frac{2\mu\sigma^2 t+\sigma^4t^2}{2\sigma^2}}
\displaystyle \mathrm{d}x
\,\dotso\,a^2-2ab+b^2-2ac+2bc+c^2=(a-b-c)^2\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}
\displaystyle \mathrm{e}^{-\frac{(x-\mu-\sigma^2t)^2}{2\sigma^2}+(\mu t + \frac{\sigma^2t^2}{2})}
\displaystyle \mathrm{d}x\\
&=&\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}
\displaystyle \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{(x-\mu-\sigma^2t)^2}{2\sigma^2}}
\displaystyle \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}
\displaystyle \mathrm{d}x\\
&=&\displaystyle \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}
\displaystyle \frac{1}{\sqrt{2\pi \sigma^2}}
\displaystyle \int_{-\infty}^{\infty}\mathrm{e}^{-\frac{(x-\mu-\sigma^2t)^2}{2\sigma^2}}\mathrm{d}x \\
&=&\displaystyle \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}\,\dotso\,\frac{1}{\sqrt{2\pi \sigma^2}}\int_{-\infty}^{\infty}\mathrm{e}^{-\frac{(x-\mu-\sigma^2t)^2}{2\sigma^2}}\mathrm{d}x
= N(\mu+\sigma^2t,\sigma^2)の総和=1\\
\end{array}$$
期待値・分散
$$\begin{array}{rcl}
\displaystyle M_X^{(m)}(0)&\equiv&\frac{ \mathrm{d}^m }{ \mathrm{d}^m t } M_x(t)|_{t=0}\\
&=&\displaystyle E[X^m\mathrm{e}^{tX}]|_{t=0}\\
&=&\displaystyle E[X^m]\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle E[X]&=&\displaystyle M_X^{(1)}(0)\\
&=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t }\left(\mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}\right) \right\}|_{t=0}\\
&=&\displaystyle \left\{ \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}(\mu+\sigma^2t) \right\}|_{t=0}\\
&=&\displaystyle \mathrm{e}^{(\mu 0 + \frac{\sigma^20^2}{2})}(\mu+\sigma^20) \\
&=&\displaystyle \mathrm{e}^{0}(\mu+0) \\
&=&\displaystyle \mu \\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle E[X^2]&=&\displaystyle M_X^{(2)}(0)\\
&=&\displaystyle \left\{ \frac{ \mathrm{d}^2 }{ \mathrm{d} t^2 }\left(\mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}\right) \right\}|_{t=0}\\
&=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t }\left( \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})}(\mu+\sigma^2t)\right) \right\}|_{t=0}\\
&=&\displaystyle \left[
\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t } \left( \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})} \right)\right\} \left( \mu+\sigma^2t \right)
\displaystyle + \left( \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})} \right) \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t } \left( \mu+\sigma^2t \right) \right\}
\right]|_{t=0}\\
&=&\displaystyle \left[
\displaystyle \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})} \left( \mu+\sigma^2t \right)^2
\displaystyle + \mathrm{e}^{(\mu t + \frac{\sigma^2t^2}{2})} \sigma^2
\displaystyle \right]|_{t=0}\\
&=&\displaystyle \mathrm{e}^{(\mu 0 + \frac{\sigma^20^2}{2})} \left( \mu+\sigma^20 \right)^2
\displaystyle + \mathrm{e}^{(\mu 0 + \frac{\sigma^20^2}{2})} \sigma^2\\
&=&\displaystyle \mu^2+\sigma^2\\
\end{array}$$
$$\begin{array}{rcl}
V[X]&=&E[X^2]-E[X]^2\\
&=&\mu^2+\sigma^2-\mu^2\\
&=&\sigma^2
\end{array}$$
0 件のコメント:
コメントを投稿