$$\begin{array}{rcl}
\displaystyle M_X^{(m)}(0)&\equiv&\frac{ \mathrm{d}^m }{ \mathrm{d}^m t } M_X(t)|_{t=0}\\
&=&\displaystyle E[X^m\mathrm{e}^{tX}]|_{t=0}\\
&=&\displaystyle E[X^m]\\
\end{array}$$
積率母凾数の二階微分
$$\begin{array}{rcl}
\displaystyle M_X^{(2)}
&=& \displaystyle \frac{\mathrm{d}^2}{\mathrm{d}t^2}\left\{
\displaystyle \href{https://shikitenkai.blogspot.com/2019/07/continuous-random-variable-uniform.html}{\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t(b-a)}}
\displaystyle \right\}\\
&=& \displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\left\{
\displaystyle \href{https://shikitenkai.blogspot.com/2019/07/continuous-random-variable-uniform_8.html}{\frac{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}}{t^2(b-a)}}
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{b-a}\left[
\displaystyle (t^{-2})'\left\{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}\right\}
\displaystyle +(t^{-2})\left\{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}\right\}'
\displaystyle \right]\\
&=& \displaystyle \frac{1}{b-a}\left[
\displaystyle (-2t^{-3})\left\{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}\right\}
\displaystyle +(t^{-2})\left[\left\{(tb-1)\mathrm{e}^{tb}\right\}'-\left\{(ta-1)\mathrm{e}^{ta}\right\}'\right]
\displaystyle \right]\\
&=& \displaystyle \frac{1}{b-a}\left[
\displaystyle (-2t^{-3})\left\{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}\right\}
\displaystyle +(t^{-2})\left[
\left\{
(tb-1)'\mathrm{e}^{tb}+(tb-1)(\mathrm{e}^{tb})'
\right\}
-\left\{
(ta-1)'\mathrm{e}^{ta}+(ta-1)(\mathrm{e}^{ta})'
\right\}
\right]
\displaystyle \right]\\
&=& \displaystyle \frac{1}{b-a}\left[
\displaystyle (-2t^{-3})\left\{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}\right\}
\displaystyle +(t^{-2})\left[
\left\{
b\mathrm{e}^{tb}+(tb-1)b\mathrm{e}^{tb}
\right\}
-\left\{
a\mathrm{e}^{ta}+(ta-1)a\mathrm{e}^{ta}
\right\}
\right]
\displaystyle \right]\\
&=& \displaystyle \frac{1}{b-a}\left[\frac{
\displaystyle -2\left\{(tb-1)\mathrm{e}^{tb}-(ta-1)\mathrm{e}^{ta}\right\}
\displaystyle +t\left[
\left\{
b\mathrm{e}^{tb}+(tb-1)b\mathrm{e}^{tb}
\right\}
-\left\{
a\mathrm{e}^{ta}+(ta-1)a\mathrm{e}^{ta}
\right\}
\right]}{t^3}
\displaystyle \right]\\
&=& \displaystyle \frac{1}{t^3(b-a)}\left[
\displaystyle -2(tb-1)\mathrm{e}^{tb}+2(ta-1)\mathrm{e}^{ta}
\displaystyle +tb\mathrm{e}^{tb}+tb(tb-1)\mathrm{e}^{tb}
\displaystyle -ta\mathrm{e}^{ta}-ta(ta-1)\mathrm{e}^{ta}
\displaystyle \right]\\
&=& \displaystyle \frac{1}{t^3(b-a)}\left[
\displaystyle \left\{-2(tb-1)+tb+tb(tb-1)\right\} \mathrm{e}^{tb}
\displaystyle +\left\{2(ta-1)-ta-ta(ta-1)\right\} \mathrm{e}^{ta}
\displaystyle \right]\\
&=& \displaystyle \frac{1}{t^3(b-a)}\left\{
\displaystyle ((tb-1)^2+1) \mathrm{e}^{tb}
\displaystyle -((ta-1)^2+1) \mathrm{e}^{ta}
\displaystyle \right\}\\
&=& \displaystyle \frac{((tb-1)^2+1) \mathrm{e}^{tb}-((ta-1)^2+1) \mathrm{e}^{ta}}{t^3(b-a)}\\
\end{array}$$
原点周りの二次モーメント
$$\begin{array}{rcl}
\displaystyle E[X^2]&=&\displaystyle M_X^{(2)}(0)\\
&=&\displaystyle \lim_{t \to 0}\left\{
\displaystyle \frac{((tb-1)^2+1) \mathrm{e}^{tb}-((ta-1)^2+1) \mathrm{e}^{ta}}{t^3(b-a)}
\displaystyle \right\}\,\dotso\,0を代入すると分母が0になってしまうので極限で考える.\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left\{
\displaystyle ((tb-1)^2+1) \mathrm{e}^{tb} - ((ta-1)^2+1) \mathrm{e}^{ta}
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left\{
\displaystyle ((tb-1)^2+1) \left(\frac{(tb)^0}{0!}+\frac{(tb)^1}{1!}+\frac{(tb)^2}{2!}+\frac{(tb)^3}{3!}\right)
\displaystyle -((ta-1)^2+1) \left(\frac{(ta)^0}{0!}+\frac{(ta)^1}{1!}+\frac{(ta)^2}{2!}+\frac{(ta)^3}{3!}\right)
\displaystyle \right\}
\displaystyle \right]\\
&& \,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/blog-post.html}{\mathrm{e}^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}=\frac{x^0}{0!}+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\dotsb}
(マクローリン展開), t^3が分母にあるのでt^4の項以上は分子にtが残ることになるのでt^3の項までで計算を進める.\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left\{
\displaystyle (t^2b^2-2tb+2) \left(1+tb+t^2\frac{b^2}{2}+t^3\frac{b^3}{6}\right)
\displaystyle -(t^2a^2-2ta+2) \left(1+ta+t^2\frac{a^2}{2}+t^3\frac{a^3}{6}\right)
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left[
\left\{
\left( t^2b^2 +t^3b^3 +t^4\frac{b^4}{2} +t^5\frac{b^5}{6} \right)
+\left( -2tb -2t^2b^2 -t^3b^3 -t^4\frac{b^4}{3} \right)
+\left(2+2tb + t^2b^2 +t^3\frac{b^3}{3} \right)
\right\}
-\left\{
\left( t^2a^2 +t^3a^3 +t^4\frac{a^4}{2} +t^5\frac{a^5}{6} \right)
+\left( -2ta -2t^2a^2 -t^3a^3 -t^4\frac{a^4}{3} \right)
+\left(2+2ta + t^2a^2 +t^3\frac{a^3}{3} \right)
\right\}
\displaystyle \right]
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left\{
\left(
2+t^3\frac{b^3}{3}+t^4\frac{b^4}{6}+t^5\frac{b^5}{6}
\right)
-\left(
2+t^3\frac{a^3}{3}+t^4\frac{a^4}{6}+t^5\frac{a^5}{6}
\right)
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left\{
t^3\frac{b^3-a^3}{3}
+t^4\frac{b^4-a^4}{6}
+t^5\frac{b^5-a^5}{6}
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\displaystyle \frac{1}{t^3(b-a)}
\displaystyle \left\{
t^3\frac{(b-a)(b^2+ab+a^2)}{3}
+t^4\frac{(b-a)(b+a)(a^2+b^2)}{6}
+t^5\frac{(b-a)\frac{b^5-a^5}{b-a}}{6}
\displaystyle \right\}
\displaystyle \right]\\
&=&\displaystyle \lim_{t \to 0}\left\{
\frac{b^2+ab+a^2}{3}
+t \frac{(b+a)(a^2+b^2)}{6}
+t^2\frac{\left(\frac{b^5-a^5}{b-a}\right)}{6}
\displaystyle \right\}\\
&=&\displaystyle \frac{b^2+ab+a^2}{3}=\frac{a^2+ab+b^2}{3}
\,\dotso\,tが分子にある(掛けられている)項は全て0.\\
\end{array}$$
分散(二次の中心モーメント)
$$\begin{array}{rcl}
\displaystyle V[X]
&=&\displaystyle E[X^2]-E[X]^2\\
&=&\displaystyle \frac{b^2+ab+a^2}{3}-\left(\href{https://shikitenkai.blogspot.com/2019/07/continuous-random-variable-uniform_8.html}{\frac{b+a}{2}}\right)^2\\
&=&\displaystyle \frac{b^2+ab+a^2}{3}-\frac{b^2+2ab+a^2}{4}\\
&=&\displaystyle \frac{4(b^2+ab+a^2)-3(b^2+2ab+a^2)}{12}\\
&=&\displaystyle \frac{4b^2+4ab+4a^2-3b^2-6ab-3a^2}{12}\\
&=&\displaystyle \frac{b^2-2ab+a^2}{12}\\
&=&\displaystyle \frac{(b-a)^2}{12}\\
\end{array}$$
0 件のコメント:
コメントを投稿