ガウス積分(Gaussian integral)
$$\begin{array}{rcl}
\displaystyle \int_{\mathbb{R}}\mathrm{e}^{-(x^2+y^2)}\mathrm{d}A
&=& \displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\mathrm{e}^{-(x^2+y^2)}\mathrm{d}x\mathrm{d}y\dotso \mathrm{d}A=\mathrm{d}x\mathrm{d}y\\
&=& \displaystyle \int_{-\infty}^{\infty}\mathrm{e}^{-x^2}\mathrm{d}x\int_{-\infty}^{\infty}\mathrm{e}^{-y^2}\mathrm{d}y\\
&=& \displaystyle \left(\int_{-\infty}^{\infty}\mathrm{e}^{-t^2}\mathrm{d}t\right)^2\\
\displaystyle \int_{\mathbb{R}}\mathrm{e}^{-(x^2+y^2)}\mathrm{d}A
&=& \displaystyle \int_{0}^{2\pi}\int_{0}^{\infty}\mathrm{e}^{-r^2}r\mathrm{d}r\mathrm{d}\theta\dotso \mathrm{d}A=r\mathrm{d}r\mathrm{d}\theta\\
&=& \displaystyle 2\pi\int_{0}^{\infty}\mathrm{e}^{-r^2}r\mathrm{d}r\\
&=& \displaystyle 2\pi\int_{0}^{\infty}\mathrm{e}^{-z} r\frac{1}{2r}\mathrm{d}z
\dotso z=r^2,\frac{\mathrm{d}z}{\mathrm{d}r}=2r,\mathrm{d}r=\frac{1}{2r}\mathrm{d}z\\
&=& \displaystyle \pi\int_{0}^{\infty}\mathrm{e}^{-z}\mathrm{d}z\\
&=& \displaystyle \pi\left[-\mathrm{e}^{-z}\right]_0^{\infty}
= \displaystyle \pi\left[\left(-\mathrm{e}^{-\infty}\right)-\left(-\mathrm{e}^{-0}\right)\right]
= \pi\left[0-\left(-1\right)\right]\\
&=& \displaystyle \pi\\
\displaystyle \left(\int_{-\infty}^{\infty}\mathrm{e}^{-t^2}\mathrm{d}t\right)^2
&=& \displaystyle \pi\\
\displaystyle \int_{-\infty}^{\infty}\mathrm{e}^{-t^2}\mathrm{d}t
&=& \displaystyle \sqrt{\pi}
\end{array}$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿