間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

離散型確率変数(discrete random variable) / 期待値(expected value)

$$\begin{array}{rcl} 母集団(population)の確率変数&:&X,Y\\ 確率質量凾数(probability\,mass\,function,\,PMF)&:&f_X(x)=P(X=x_i)\\ &&\displaystyle\sum_{i=1}^{\infty} f_X(x_i)=1\\ 累積分布凾数(cumulative\,distribution\,function,\,CDF)&:&\displaystyle F_X(x)=\sum_{i:x_i \leq x} f_X(x_i)\\ 同時確率質量凾数(joint\,probability\,mass\,function)&:&f_X(x, y)=P(X=x_i,\,Y=y_j)\\ &&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} f_{XY}(x_i, y_j)=1\\ 周辺確率質量凾数(marginal\, probability\, mass\, function)&:&\displaystyle f_X(x)=\sum_{j=1}^{\infty} f_{XY}(x, y_i)\\ \end{array}$$ $$\begin{array}{rcl} E[g(X)]&\equiv&\displaystyle\sum_{i=1}^{\infty} g(x_i) f_X(x_i) \\ E[X]&=&\displaystyle\sum_{i=1}^{\infty} (x_i) f_X(x_i) \\ E[cX] &=&\displaystyle\sum_{i=1}^{\infty} (c x_i) f_X(x_i) \,\dotso\,cは定数\\ &=&c\displaystyle\sum_{i=1}^{\infty} x_i f_X(x_i) \\ &=&c E[X] \\ E[X \pm t]&=&\displaystyle\sum_{i=1}^{\infty} (x_i \pm t) f_X(x_i) \,\dotso\,tは定数\\ &=&\displaystyle\sum_{i=1}^{\infty} (x_i f_X(x_i) \pm t f_X(x_i)) \\ &=&\displaystyle\sum_{i=1}^{\infty} x_i f_X(x_i) \pm \displaystyle\sum_{i=1}^{\infty} t f_X(x_i) \\ &=&\displaystyle\sum_{i=1}^{\infty} x_i f_X(x_i) \pm t \displaystyle\sum_{i=1}^{\infty} f_X(x_i) \\ &=&E[X] \pm t\\ E[X \pm Y]&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} (x_i \pm y_j) f_{XY}(x_i, y_j) \\ &=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} (x_i f_{XY}(x_i, y_j) \pm y_j f_{XY}(x_i, y_j)) \\ &=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} x_i f_{XY}(x_i, y_j) \pm \displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} y_j f_{XY}(x_i, y_j)\\ &=&\displaystyle\sum_{i=1}^{\infty} x_i \sum_{j=1}^{\infty} f_{XY}(x_i, y_j) \pm \displaystyle\sum_{j=1}^{\infty} y_j \sum_{i=1}^{\infty}f_{XY}(x_i, y_j)\\ &=&\displaystyle\sum_{i=1}^{\infty} x_i f_{X}(x_i) \pm \displaystyle\sum_{j=1}^{\infty} y_j f_{Y}(y_j)\,\dotso\,周辺確率質量凾数を適用\\ &=& E[X] \pm E[Y] \\ \end{array}$$

X,Yが独立の場合

$$\begin{array}{rcl} E[XY]&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(x_i y_j)f_{XY}(x_i, y_j)\\ &=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}x_iy_jf_{X}(x_i)f_{Y}(y_i) \,\dotso\,X,Yが独立\,f_{XY}(x, y)=f_{X}(x)f_{Y}(y)\\ &=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}x_if_{X}(x_i)y_jf_{Y}(y_i)\\ &=&\displaystyle\left(\sum_{i=1}^{\infty}x_if_{X}(x_i)\right)\left(\sum_{j=1}^{\infty} y_jf_{Y}(y_i)\right) \,\dotso\,\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_ib_j=\sum_{i=1}^{\infty}a_i\sum_{j=1}^{\infty}b_j\\ &=&E[X]E[Y] \end{array}$$

0 件のコメント:

コメントを投稿