離散型確率変数(discrete random variable) / 期待値(expected value)
$$\begin{array}{rcl}
母集団(population)の確率変数&:&X,Y\\
確率質量凾数(probability\,mass\,function,\,PMF)&:&f_X(x)=P(X=x_i)\\
&&\displaystyle\sum_{i=1}^{\infty} f_X(x_i)=1\\
累積分布凾数(cumulative\,distribution\,function,\,CDF)&:&\displaystyle F_X(x)=\sum_{i:x_i \leq x} f_X(x_i)\\
同時確率質量凾数(joint\,probability\,mass\,function)&:&f_X(x, y)=P(X=x_i,\,Y=y_j)\\
&&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} f_{XY}(x_i, y_j)=1\\
周辺確率質量凾数(marginal\, probability\, mass\, function)&:&\displaystyle f_X(x)=\sum_{j=1}^{\infty} f_{XY}(x, y_i)\\
\end{array}$$
$$\begin{array}{rcl}
E[g(X)]&\equiv&\displaystyle\sum_{i=1}^{\infty} g(x_i) f_X(x_i) \\
E[X]&=&\displaystyle\sum_{i=1}^{\infty} (x_i) f_X(x_i) \\
E[cX] &=&\displaystyle\sum_{i=1}^{\infty} (c x_i) f_X(x_i) \,\dotso\,cは定数\\
&=&c\displaystyle\sum_{i=1}^{\infty} x_i f_X(x_i) \\
&=&c E[X] \\
E[X \pm t]&=&\displaystyle\sum_{i=1}^{\infty} (x_i \pm t) f_X(x_i) \,\dotso\,tは定数\\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i f_X(x_i) \pm t f_X(x_i)) \\
&=&\displaystyle\sum_{i=1}^{\infty} x_i f_X(x_i)
\pm \displaystyle\sum_{i=1}^{\infty} t f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} x_i f_X(x_i)
\pm t \displaystyle\sum_{i=1}^{\infty} f_X(x_i) \\
&=&E[X] \pm t\\
E[X \pm Y]&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} (x_i \pm y_j) f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} (x_i f_{XY}(x_i, y_j) \pm y_j f_{XY}(x_i, y_j)) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} x_i f_{XY}(x_i, y_j)
\pm \displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} y_j f_{XY}(x_i, y_j)\\
&=&\displaystyle\sum_{i=1}^{\infty} x_i \sum_{j=1}^{\infty} f_{XY}(x_i, y_j)
\pm \displaystyle\sum_{j=1}^{\infty} y_j \sum_{i=1}^{\infty}f_{XY}(x_i, y_j)\\
&=&\displaystyle\sum_{i=1}^{\infty} x_i f_{X}(x_i)
\pm \displaystyle\sum_{j=1}^{\infty} y_j f_{Y}(y_j)\,\dotso\,周辺確率質量凾数を適用\\
&=& E[X] \pm E[Y] \\
\end{array}$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿