離散型確率変数(discrete random variable) / 分散(variance)
$$\begin{array}{rcl}
母集団(population)の確率変数&:&X,Y\\
確率質量凾数(probability\,mass\,function,\,PMF)&:&f_X(x)=P(X=x_i)\\
&&\displaystyle\sum_{i=1}^{\infty} f_X(x_i)=1\\
累積分布凾数(cumulative\,distribution\,function,\,CDF)&:&\displaystyle F_X(x)=\sum_{i:x_i \leq x} f_X(x_i)\\
同時確率質量凾数(joint\,probability\,mass\,function)&:&f_X(x, y)=P(X=x_i,\,Y=y_j)\\
&&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} f_{XY}(x_i, y_j)=1\\
周辺確率質量凾数(marginal\, probability\, mass\, function)&:&\displaystyle f_X(x)=\sum_{j=1}^{\infty} f_{XY}(x, y_i)\\
\end{array}$$
$$\begin{array}{rcl}
V[X]&\equiv&E[(X-E[X])^2]\\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i-E[X])^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i^2-2E[X]x_i+E[X]^2) f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i^2f_X(x_i)-2E[X]x_if_X(x_i)+E[X]^2f_X(x_i)) \\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i^2) f_X(x_i)
-2E[X]\displaystyle\sum_{i=1}^{\infty} (x_i) f_X(x_i)
+E[X]^2\displaystyle\sum_{i=1}^{\infty} f_X(x_i)\\
&=&E[X^2] -2E[X]E[X] +E[X]^2 1\\
&=&E[X^2] -2E[X]^2 +E[X]^2\\
&=&E[X^2]-E[X]^2\\
V[cX] &=&E[(cX-E[cX])^2]\,\dotso\,cは定数\\
&=&\displaystyle\sum_{i=1}^{\infty} (c x_i - E[c X])^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} (c x_i - c E[X])^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} (c (x_i - E[X]))^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} c^2 (x_i-E[X])^2 f_X(x_i) \\
&=&c^2\displaystyle\sum_{i=1}^{\infty} (x_i-E[X])^2 f_X(x_i) \\
&=&c^2 V[X] \\
V[X \pm t]&=&E[((X \pm t)-E[X \pm t])^2]\,\dotso\,tは定数\\
&=&\displaystyle\sum_{i=1}^{\infty} ((x_i \pm t)-E[X \pm t])^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} ((x_i \pm t)-(E[X] \pm t))^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i \pm t - E[X] \mp t))^2 f_X(x_i) \\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i-E[X])^2 f_X(x_i) \\
&=&V[X] \\
V[X \pm Y]&=&E[((X \pm Y)-E[X \pm Y])^2]\\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} ((x_i \pm y_j)-E[X \pm Y])^2 f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} ((x_i \pm y_j)-(E[X] \pm E[Y]))^2 f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} ((x_i - E[X]) \pm (y_j - E[Y]))^2 f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} ((x_i - E[X])^2 \pm 2(x_i - E[X])(y_j - E[Y]) +(y_j - E[Y])^2) f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} ((x_i - E[X])^2 f_{XY}(x_i, y_j) \pm 2(x_i - E[X])(y_j - E[Y]) f_{XY}(x_i, y_j) +(y_j - E[Y])^2 f_{XY}(x_i, y_j)) \\
&=&\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} (x_i - E[X])^2 f_{XY}(x_i, y_j)
\pm 2\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(x_i - E[X])(y_j - E[Y]) f_{XY}(x_i, y_j)
+ \displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} (y_j - E[Y])^2 f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty}(x_i - E[X])^2\sum_{j=1}^{\infty}f_{XY}(x_i, y_j)
\pm 2\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(x_i - E[X])(y_j - E[Y]) f_{XY}(x_i, y_j)
+ \displaystyle\sum_{j=1}^{\infty} (y_j - E[Y])^2 \sum_{i=1}^{\infty} f_{XY}(x_i, y_j) \\
&=&\displaystyle\sum_{i=1}^{\infty} (x_i - E[X])^2 f_{X}(x_i)
\pm 2\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(x_i - E[X])(y_j - E[Y]) f_{XY}(x_i, y_j)
+ \displaystyle\sum_{j=1}^{\infty} (y_j - E[Y])^2 f_{Y}(y_j)\,\dotso\,周辺確率質量凾数を適用 \\
&=&V[X] \pm 2Cov[X,Y] +V[Y]\,\dotso\,Cov[X,Y]=\displaystyle\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(x_i - E[X])(y_j - E[Y]) f_{XY}(x_i, y_j)\\
\end{array}$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿