連続型確率変数(continuous random variable) / 分散(variance)
$$\begin{array}{rcl}
母集団(population)の確率変数&:&X,Y\\
確率密度凾数(probability \, density \, function, \, PDF)&:&\displaystyle\int_{a}^{b}f_X(x)\mathrm{d}x=P(a \leq x \leq b)\\
&&\displaystyle\int_{-\infty}^{\infty}f_X(x)\mathrm{d}x=1\\
累積分布凾数(cumulative \, distribution \, function, \, CDF)&:&\displaystyle F_X(x)=\int_{-\infty}^{x}f_X(t)\mathrm{d}t\\
&&\displaystyle f_X(x)=\frac{\mathrm{d}}{\mathrm{d}x}F_X(x)\\
同時確率密度凾数(joint\,probability\,density\,function)&:&\displaystyle\int_{a}^{b}\int_{c}^{d}f_{XY}(x, y)\mathrm{d}x\mathrm{d}y=P(a \leq x \leq b,\,c \leq y \leq d)\\
&&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{XY}(x, y)\mathrm{d}x\mathrm{d}y=1\\
周辺確率密度凾数(marginal\, probability\, density\, function)&:&\displaystyle f_X(x)=\int_{-\infty}^{\infty}f_{XY}(x,y)\mathrm{d}y
\end{array}$$
$$\begin{array}{rcl}
V[X]&\equiv&E[(X-E[X])^2]\\
&=&\displaystyle\int_{-\infty}^{\infty} (x-E[X])^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (x^2-2E[X]x+E[X]^2) f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (x^2f_X(x)-2E[X]xf_X(x)+E[X]^2f_X(x)) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (x^2) f_X(x)\mathrm{d}x
-2E[X]\displaystyle\int_{-\infty}^{\infty} (x) f_X(x)\mathrm{d}x
+E[X]^2\displaystyle\int_{-\infty}^{\infty} f_X(x)\mathrm{d}x\\
&=&E[X^2] -2E[X]E[X] +E[X]^2 1\\
&=&E[X^2] -2E[X]^2 +E[X]^2\\
&=&E[X^2]-E[X]^2\\
V[cX] &=&E[(cX-E[cX])^2]\,\dotso\,cは定数\\
&=&\displaystyle\int_{-\infty}^{\infty} (c x - E[c X])^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (c x - c E[X])^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (c (x - E[X]))^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} c^2 (x-E[X])^2 f_X(x) \mathrm{d}x\\
&=&c^2\displaystyle\int_{-\infty}^{\infty} (x-E[X])^2 f_X(x) \mathrm{d}x\\
&=&c^2 V[X]\\
V[X \pm t]&=&E[((X \pm t)-E[X \pm t])^2]\,\dotso\,tは定数\\
&=&\displaystyle\int_{-\infty}^{\infty} ((x \pm t)-E[X \pm t])^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} ((x \pm t)-(E[X] \pm t))^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (x \pm t - E[X] \mp t))^2 f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} (x-E[X])^2 f_X(x) \mathrm{d}x\\
&=&V[X]\\
V[X \pm Y]&=&E[((X \pm Y)-E[X \pm Y])^2]\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} ((x \pm y)-E[X \pm Y])^2 f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} ((x \pm y)-(E[X] \pm E[Y]))^2 f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} ((x - E[X]) \pm (y - E[Y]))^2 f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} ((x - E[X])^2 \pm 2(x - E[X])(y - E[Y]) +(y - E[Y])^2) f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} ((x - E[X])^2 f_{XY}(x, y) \pm 2(x - E[X])(y - E[Y]) f_{XY}(x, y) +(y - E[Y])^2 f_{XY}(x, y)) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} (x - E[X])^2 f_{XY}(x, y) \mathrm{d}x\mathrm{d}y
\pm 2\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x - E[X])(y - E[Y]) f_{XY}(x, y) \mathrm{d}x\mathrm{d}y
+ \displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} (y - E[Y])^2 f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty} (x - E[X])^2 \int_{-\infty}^{\infty} f_{XY}(x, y) \mathrm{d}y\, \mathrm{d}x
\pm 2\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x - E[X])(y - E[Y]) f_{XY}(x, y) \mathrm{d}x\mathrm{d}y
+ \displaystyle\int_{-\infty}^{\infty} (y - E[Y])^2 \int_{-\infty}^{\infty} f_{XY}(x, y) \mathrm{d}x\,\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty} (x - E[X])^2 f_{X}(x) \mathrm{d}x
\pm 2\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x - E[X])(y - E[Y]) f_{XY}(x, y) \mathrm{d}x\mathrm{d}y
+ \displaystyle\int_{-\infty}^{\infty} (y - E[Y])^2 f_{Y}(y) \mathrm{d}y \,\dotso\,周辺確率密度凾数を適用\\
&=&V[X] \pm 2Cov[X,Y] +V[Y]\,\dotso\,Cov[X,Y]=\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x - E[X])(y - E[Y]) f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
\end{array}$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿