連続型確率変数(continuous random variable) / 期待値(expected value)
$$\begin{array}{rcl}
母集団(population)の確率変数&:&X,Y\\
確率密度凾数(probability \, density \, function, \, PDF)&:&\displaystyle\int_{a}^{b}f_X(x)\mathrm{d}x=P(a \leq x \leq b)\\
&&\displaystyle\int_{-\infty}^{\infty}f_X(x)\mathrm{d}x=1\\
累積分布凾数(cumulative \, distribution \, function, \, CDF)&:&\displaystyle F_X(x)=\int_{-\infty}^{x}f_X(t)\mathrm{d}t\\
&&\displaystyle f_X(x)=\frac{\mathrm{d}}{\mathrm{d}x}F_X(x)\\
同時確率密度凾数(joint\,probability\,density\,function)&:&\displaystyle\int_{a}^{b}\int_{c}^{d}f_{XY}(x, y)\mathrm{d}x\mathrm{d}y=P(a \leq x \leq b,\,c \leq y \leq d)\\
&&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{XY}(x, y)\mathrm{d}x\mathrm{d}y=1\\
周辺確率密度凾数(marginal\, probability\, density\, function)&:&\displaystyle f_X(x)=\int_{-\infty}^{\infty}f_{XY}(x,y)\mathrm{d}y
\end{array}$$
$$\begin{array}{rcl}
E[g(X)]&\equiv&\displaystyle\int_{-\infty}^{\infty} g(x) f_X(x) \mathrm{d}x\\
E[X]&=&\displaystyle\int_{-\infty}^{\infty} (x) f_X(x) \mathrm{d}x\\
E[cX] &=&\displaystyle\int_{-\infty}^{\infty} (c x) f_X(x) \mathrm{d}x\,\dotso\,cは定数\\
&=&c\displaystyle\int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x\\
&=&c E[X] \\
E[X \pm t]&=&\displaystyle\int_{-\infty}^{\infty} (x \pm t) f_X(x) \mathrm{d}x\,\dotso\,tは定数\\
&=&\displaystyle\int_{-\infty}^{\infty} (x f_X(x) \pm t f_X(x)) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} x f_X(x)
\pm \displaystyle\int_{-\infty}^{\infty} t f_X(x) \mathrm{d}x\\
&=&\displaystyle\int_{-\infty}^{\infty} x f_X(x)
\pm t \displaystyle\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x\\
&=&E[X] \pm t\\
E[X \pm Y]&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} (x \pm y) f_{XY}(x, y) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} (x f_{XY}(x, y) \pm y f_{XY}(x, y)) \mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} x f_{XY}(x, y) \mathrm{d}x\mathrm{d}y
\pm \displaystyle\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} y f_{XY}(x, y)\mathrm{d}x\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{XY}(x, y) \mathrm{d}y\,\mathrm{d}x
\pm \displaystyle\int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{XY}(x, y)\mathrm{d}x\,\mathrm{d}y\\
&=&\displaystyle\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d}x
\pm \displaystyle\int_{-\infty}^{\infty} y f_{Y}(y) \mathrm{d}y\,\dotso\,周辺確率密度凾数を適用\\
&=& E[X] \pm E[Y] \\
\end{array}$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿