二項分布 \(B(n, p)\)
$$B(n, p) = f_X(x) =
\begin{cases}
\displaystyle _nC_x\,p^x(1-p)^{n-x} & \quad x \in \left\{0,1,2, \dotso ,n\right\}\\
\displaystyle 0 & \quad x \notin \left\{0,1,2, \dotso ,n\right\}
\end{cases}
$$
\(f_X(x)\)の対数をとる
$$\begin{array}{rcl}
\displaystyle \log\left( f_X(x) \right)
\displaystyle &=& \log\left( _nC_x\,p^x(1-p)^{n-x} \right)\\
\displaystyle &=& \log\left(\frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}\right)\\
\displaystyle &=& \log n!-\log x!-\log(n-x)!+\log p^x+\log(1-p)^{n-x}\\
\displaystyle &=& \log n!-\log x!-\log(n-x)!+x\log p+(n-x)\log(1-p)\\
\end{array}$$
一階微分
$$\begin{array}{rcl}
\displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x } \log\left(f_X(x) \right)
&=& \displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x }\left( \log n!-\log x!-\log(n-x)!+x\log p+(n-x)\log(1-p) \right)
\displaystyle \,\dotso\,\href{https://shikitenkai.blogspot.com/2019/06/blog-post_21.html}{n \to \infty場合, \frac{ \mathrm{d} }{ \mathrm{d}x } \log\left(x!\right) \simeq \log\left(x\right)}\\
&=& \displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x }\log n!
\displaystyle -\frac{ \mathrm{d} }{ \mathrm{d}x }\log x!
\displaystyle -\frac{ \mathrm{d} }{ \mathrm{d}x }\log(n-x)!
\displaystyle +\frac{ \mathrm{d} }{ \mathrm{d}x }x\log p
\displaystyle +\frac{ \mathrm{d} }{ \mathrm{d}x }(n-x)\log(1-p) \\
&=& \displaystyle 0-\log x+\log(n-x)+\log p-\log(1-p) \\
&=& \displaystyle \log \frac{(n-x)p}{x(1-p)}\\
\end{array}$$
二階微分
$$\begin{array}{rcl}
\displaystyle \frac{ \mathrm{d}^2 }{ \mathrm{d}x^2 } \log\left(f_X(x) \right)
&=& \displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x } \left(\log \frac{(n-x)p}{x(1-p)}\right)\\
&=& \displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x }\log(n-x)
+\frac{ \mathrm{d} }{ \mathrm{d}x }\log p
-\frac{ \mathrm{d} }{ \mathrm{d}x }\log x
-\frac{ \mathrm{d} }{ \mathrm{d}x }\log(1-p) \\
&=& \displaystyle \left(\frac{-1}{n-x}\right)+0-\left(\frac{1}{x}\right)-0 \\
&=& \displaystyle \frac{-1}{n-x}-\frac{1}{x} \\
&=& \displaystyle \frac{-x-(n-x)}{x(n-x)} \\
&=& \displaystyle \frac{-n}{x(n-x)} \\
\end{array}$$
\(\log\left(f_X(x) \right)\)の極値を考える(logは単調に増加する凾数なので\(f_X(x)\)も極値)
$$\begin{array}{rcl}
\displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x } \log\left(f_X(x) \right)&=&0\\
\displaystyle \log \frac{(n-x)p}{x(1-p)}&=&0\\
\displaystyle \frac{(n-x)p}{x(1-p)}&=&1\,\dotso\,\log\left(1\right)=0\\
\displaystyle (n-x)p&=&x(1-p)\\
\displaystyle np-xp&=&x(1-p)\\
\displaystyle np&=&x(1-p)+xp\\
\displaystyle np&=&x(1-p+p)\\
\displaystyle np&=&x\\
x&=&np\,\dotso\,\log\left(f_X(x)\right)が極値の際のx,二項分布の期待値はnp(=\mu)\\
\displaystyle \frac{ \mathrm{d} }{ \mathrm{d}x } \log\left(f_X(np) \right)&=&0\\
\end{array}$$
二階微分における\(x=np\)場合の値
$$\begin{array}{rcl}
\displaystyle \frac{ \mathrm{d}^2 }{ \mathrm{d}x^2 } \log\left(f_X(np) \right)
&=& \displaystyle \frac{-n}{np(n-np)}\,\dotso\,xに期待値npを代入 \\
&=& \displaystyle \frac{-n}{n^2p(1-p)} \\
&=& \displaystyle \frac{-1}{np(1-p)}\,\dotso\,二項分布の分散はnp(1-p)(=\sigma^2)なので\frac{-1}{np(1-p)}=\frac{-1}{\sigma^2}\\
\end{array}$$
\(x=\mu\)周りのテイラー展開
$$\begin{array}{rcl}
\displaystyle g(x) &=& \frac{1}{0!}g^{(0)}(\mu)(x-\mu)^0
+\frac{1}{1!}g^{(1)}(\mu)(x-\mu)^1
+\frac{1}{2!}g^{(2)}(\mu)(x-\mu)^2+\,\dotso\\
\log\left(f_X(x) \right)
&=& \frac{1}{0!}(f_X(\mu))(x-\mu)^0
+\frac{1}{1!}(f_X'(\mu))(x-\mu)^1
+\frac{1}{2!}(f_X''(\mu))(x-\mu)^2+\,\dotso\\
&=& \frac{1}{1}f_X(\mu)1
+\frac{1}{1}0(x-\mu)
+\frac{1}{2}\frac{-1}{\sigma^2}(x-\mu)^2+\,\dotso\\
&=& f_X(\mu)+0+\frac{-(x-\mu)^2}{2\sigma^2}\\
&=& f_X(\mu)+\frac{-(x-\mu)^2}{2\sigma^2}\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle \mathrm{e}^{\log\left(f_X(x) \right)}=f_X(x)&=&\mathrm{e}^{\left(f_X(\mu)+\frac{-(x-\mu)^2}{2\sigma^2}\right)}\\
\displaystyle &=&\mathrm{e}^{f_X(\mu)}\mathrm{e}^{\frac{-(x-\mu)^2}{2\sigma^2}}\\
\displaystyle &=&C\mathrm{e}^{\frac{-(x-\mu)^2}{2\sigma^2}}\,\dotso\,\mathrm{C}=\mathrm{e}^{f_X(\mu)}\\
\end{array}$$
定数\(C\)を求める
$$\begin{array}{rcl}
\displaystyle \int_{-\infty}^{\infty}\mathrm{e}^{\frac{-(x-\mu)^2}{2\sigma^2}}\mathrm{d}x
&=& \displaystyle \int_{-\infty}^{\infty}\mathrm{e}^{\frac{-1}{2}y^2}\mathrm{d}x
\,\dotso\,y=\frac{x-\mu}{\sigma},\frac{ \mathrm{d}y }{ \mathrm{d}x }=\frac{1}{\sigma},\mathrm{d}x=\sigma \mathrm{d}y\\
&=& \displaystyle \int_{-\infty}^{\infty}\mathrm{e}^{\frac{-y^2}{2}}\sigma\mathrm{d}y\\
&=& \displaystyle \sigma\int_{-\infty}^{\infty}\mathrm{e}^{\frac{-y^2}{2}}\mathrm{d}y\\
&=& \displaystyle \sigma\sqrt{2\pi}
\,\dotso\,\href{https://shikitenkai.blogspot.com/2019/06/gaussian-integral.html}{\int_{-\infty}^{\infty}\mathrm{e}^{\frac{-y^2}{2}}\mathrm{d}y=\sqrt{2\pi}}\\
&=& \sqrt{2\pi\sigma^2}\\
\end{array}$$
$$\begin{array}{rcl}
\displaystyle \int_{-\infty}^{\infty}f_X(x)\mathrm{d}x
&=&\displaystyle C\int_{-\infty}^{\infty}\mathrm{e}^{\frac{-(x-\mu)^2}{2\sigma^2}}\mathrm{d}x\\
1&=&\displaystyle C\sqrt{2\pi \sigma^2}\\
C&=&\frac{1}{\sqrt{2\pi \sigma^2}}
\end{array}$$
定数\(C\)に値を代入する
$$\begin{array}{rcl}
f_X(x)&=&\frac{1}{\sqrt{2\pi \sigma^2}}\mathrm{e}^{\frac{-(x-\mu)^2}{2\sigma^2}}\\
&=&N(\mu, \sigma^2)\\
\end{array}$$
0 件のコメント:
コメントを投稿