t分布の期待値
\begin{eqnarray}
\mathrm{E}\left[X\right]&=&\int_{-\infty}^{\infty}x\cdot\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\;\ldots\;\href{https://shikitenkai.blogspot.com/2022/10/t.html}{t分布の確率密度凾数:\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}}
\\&=&\frac{1}{\sqrt{n}}\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{-\infty}^{\infty}x
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\end{eqnarray}
\begin{eqnarray}
彼積分凾数(x)&=&x\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\\彼積分凾数(-x)&=&(-x)\left(1+\frac{(-x)^2}{n}\right)^{-\frac{n+1}{2}}
\\&=&-x\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\\&=&-彼積分凾数(x)\;\ldots\;奇凾数
\end{eqnarray}
\begin{eqnarray}
\mathrm{E}\left[X\right]
&=&\frac{1}{\sqrt{n}}\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{-\infty}^{\infty}x
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\\&=&\frac{1}{\sqrt{n}}\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}\cdot0
\\&&\;\ldots\;奇凾数の上端と下端の絶対値が等しい定積分は0.
\\&&\;\ldots\;\int_{-a}^{a}f(x)\mathrm{d}x=0,f(x)が奇凾数の場合
\\&=&0
\end{eqnarray}
t分布の分散
\begin{eqnarray}
\mathrm{E}\left[X^2\right]
&=&\int_{-\infty}^{\infty}x^2\cdot\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\\&=&\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{-\infty}^{\infty}x^2
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\end{eqnarray}
\begin{eqnarray}
彼積分凾数(x)&=&x^2\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\\彼積分凾数(-x)&=&(-x)^2\left(1+\frac{(-x)^2}{n}\right)^{-\frac{n+1}{2}}
\\&=&x^2\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\\&=&彼積分凾数(x)\;\ldots\;偶凾数
\end{eqnarray}
\begin{eqnarray}
\mathrm{E}\left[X^2\right]&=&\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{-\infty}^{\infty}x^2
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\\&=&2\int_{0}^{\infty}x^2\cdot\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\mathrm{d}x
\\&&\;\ldots\;偶凾数の上端と下端の絶対値が等しい定積分は2\int_{0}^{a}f(x)\mathrm{d}x.
\\&&\;\ldots\;\int_{-a}^{a}f(x)\mathrm{d}x=2\int_{0}^{a}f(x)\mathrm{d}x,f(x)が偶凾数の場合
\\&=&2\int_{1}^{0}\left(n\left(t^{-1}-1\right)\right)\cdot\frac{1}{\sqrt{n}}
\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\left(1+\frac{n\left(t^{-1}-1\right)}{n}\right)^{-\frac{n+1}{2}}
n^{\frac{1}{2}}\frac{1}{2}\left(t^{-1}-1\right)^{-\frac{1}{2}}\left(-t^{-2}\right)
\mathrm{d}t
\\&&\;\ldots\;x^2=n\left(t^{-1}-1\right)
\\&&\;\ldots\;x=n^{\frac{1}{2}}\left(t^{-1}-1\right)^{\frac{1}{2}}=n^{\frac{1}{2}}s^{\frac{1}{2}}\;\ldots\;s=t^{-1}-1
\\&&\;\ldots\;x:0\rightarrow\infty, t:1\rightarrow0
\\&&\;\ldots\;\frac{\mathrm{d}{x}}{\mathrm{d}{t}}=\frac{\mathrm{d}{x}}{\mathrm{d}{s}}\frac{\mathrm{d}{s}}{\mathrm{d}{t}}
=n^{\frac{1}{2}}\frac{1}{2}s^{\frac{1}{2}-1}\frac{\mathrm{d}{s}}{\mathrm{d}{t}}=n^{\frac{1}{2}}\frac{1}{2}\left(t^{-1}-1\right)^{-\frac{1}{2}}\left(-t^{-2}\right)
\\&=&\cancel{2}\frac{1}{\cancel{\sqrt{n}}}\frac{1}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}\cancel{\frac{1}{2}}
n\cancel{n^{\frac{1}{2}}}(-1)
\int_{1}^{0}
\left(1+\frac{\cancel{n}\left(t^{-1}-1\right)}{\cancel{n}}\right)^{-\frac{n+1}{2}}
\left(t^{-1}-1\right)^{1-\frac{1}{2}}
t^{-2}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
\left(\cancel{1}+t^{-1}\cancel{-1}\right)^{-\frac{n+1}{2}}
\left(t^{-1}-1\right)^{\frac{1}{2}}
t^{-2}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n+1}{2}}
\left(t^{-1}-1\right)^{\frac{1}{2}}
t^{-2}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n}{2}-\frac{3}{2}}
\left(\frac{t}{t}\left(t^{-1}-1\right)\right)^{\frac{1}{2}}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n}{2}-\frac{3}{2}}
\left(\frac{1}{t}\left(1-t\right)\right)^{\frac{1}{2}}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n}{2}-\frac{3}{2}}
\left(\frac{1}{t}\right)^\frac{1}{2}\left(1-t\right)^{\frac{1}{2}}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n}{2}-\frac{3}{2}}
t^{-\frac{1}{2}}\left(1-t\right)^{\frac{1}{2}}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n}{2}-\frac{4}{2}}
\left(1-t\right)^{\frac{1}{2}}
\mathrm{d}t
\\&=&\frac{n}{\beta{\left(\frac{1}{2},\frac{n}{2}\right)}}
\int_{0}^{1}
t^{\frac{n}{2}-1-1}
\left(1-t\right)^{\frac{3}{2}-1}
\mathrm{d}t
\\&=&\frac{n}{
\frac{
\Gamma{\left(\frac{1}{2}\right)}
\Gamma{\left(\frac{n}{2}\right)}
}{
\Gamma{
\left(\frac{1}{2}+\frac{n}{2}\right)
}
}}
\frac{
\Gamma{\left(\frac{n}{2}-1\right)}
\Gamma{\left(\frac{3}{2}\right)}
}{
\Gamma{
\left(\frac{n}{2}-1+\frac{3}{2}\right)
}
}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2020/05/blog-post_22.html}{
\beta{\left(a,b\right)}=\frac{
\Gamma{\left(a\right)}
\Gamma{\left(b\right)}
}{
\Gamma{
\left(a+b\right)
}
}=\int_0^1 x^{a-1}(1-x)^{b-1}\mathrm{d}x}
\\&=&n
\frac{
\cancel{\Gamma{
\left(\frac{1}{2}+\frac{n}{2}\right)
}}
}{
\Gamma{\left(\frac{1}{2}\right)}
\color{green}{\Gamma{\left(\frac{n}{2}\right)}}
}
\frac{
\Gamma{\left(\frac{n}{2}-1\right)}
\color{blue}{\Gamma{\left(\frac{3}{2}\right)}}
}{
\cancel{\Gamma{
\left(\frac{n}{2}+\frac{1}{2}\right)
}}
}
\\&=&n
\frac{1}{
\cancel{\Gamma{\left(\frac{1}{2}\right)}}
\color{green}{\left(\frac{n}{2}-1\right)\cancel{\Gamma{\left(\frac{n}{2}-1\right)}}}
}
\frac{
\cancel{\Gamma{\left(\frac{n}{2}-1\right)}}
\color{blue}{\frac{1}{2}\cancel{\Gamma{\left(\frac{1}{2}\right)}}}
}{1}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2020/08/s1ss.html}{\Gamma\left(z+1\right)=z\Gamma\left(z\right)}
\\&=&n
\frac{1}{
\left(\frac{n}{2}-1\right)
}
\frac{
\frac{1}{2}
}{1}
\\&=&\frac{n}{n-2}
\end{eqnarray}
\begin{eqnarray}
\mathrm{V}\left[X\right]&=&\mathrm{E}\left[X^2\right]-\mathrm{E}\left[X\right]^2
\\&=&\frac{n}{n-2}-0^2
\\&=&\frac{n}{n-2}
\end{eqnarray}
0 件のコメント:
コメントを投稿