\( X=\frac{Y}{\sqrt{\frac{Z}{n}}} \), \(t\)分布の確率変数
\(t\)分布は次の確率変数\(X\)を考えます.
$$\begin{eqnarray}
X&=&\frac{Y}{\sqrt{\frac{Z}{n}}}\;\cdots\;\frac{Y}{\mathrm{RMS}\left[Y\right]}
\\Y&:&f_Y(y)=\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}
\;\cdots\;z分布\left(標準正規分布\right)
\\Z&:&f_Z(z)=\frac{1}{2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}e^{-\frac{z}{2}}z^{\frac{n}{2}-1}
\;\cdots\;\chi^2分布\left(Z=\sum_{i=1}^n Y_i^2\right)
\\&&\end{eqnarray}$$
\( f_{YZ}(y,z) \), \(Y\)と\(Z\)の同時確率
$$\begin{eqnarray}
f_{YZ}(y,z)&=&f_Y(y)\cdot f_Z(z)\;\cdots\;YとZは独立
\end{eqnarray}$$
変数変換, \(Y\)と\(Z\)から\(X\)と\(U\)へ
$$\begin{eqnarray}
x&=&\frac{y}{\sqrt{\frac{z}{n}}}&より&y&=&x\sqrt{\frac{z}{n}}
\end{eqnarray}$$
$$
\left\{
\begin{eqnarray}
z&=&u
\\y&=&x\sqrt{\frac{u}{n}}
\end{eqnarray}
\right.$$
\begin{eqnarray}
J&=&\left|\frac{\partial(y,z)}{\partial(x,u)}\right|
\\&=&\left|\begin{matrix}
\frac{\partial y}{\partial x}&\frac{\partial y}{\partial u}
\\\frac{\partial z}{\partial x}&\frac{\partial z}{\partial u}
\end{matrix}\right|
\\&=&\left|\begin{matrix}
\sqrt{\frac{u}{n}}&\frac{x}{\sqrt{n}}\frac{1}{2}u^{-\frac{1}{2}}
\\0&1
\end{matrix}\right|
\\&=&\sqrt{\frac{u}{n}}\cdot 1 - \frac{x}{\sqrt{n}}\frac{1}{2}u^{-\frac{1}{2}} \cdot 0
\\&=&\sqrt{\frac{u}{n}}
\end{eqnarray}
\begin{eqnarray}
&&\int_{0}^{\infty}\int_{\infty}^{-\infty}f_Y(y)f_Z(z)\mathrm{d}y\mathrm{d}z\;\cdots\;Y,Zの同時確率の全事象
\\&=&\int_{0}^{\infty}\int_{\infty}^{-\infty}f_Y\left(x\sqrt{\frac{u}{n}}\right)f_Z(u)\sqrt{\frac{u}{n}}\mathrm{d}x\mathrm{d}u
\\&&\;\cdots\;変数変換:y=x\sqrt{\frac{u}{n}},\;z=u,J=\sqrt{\frac{u}{n}}
\\&&\;\cdots\;x=\frac{y}{\sqrt{\frac{u}{n}}}なので,\;y:-\infty\rightarrow\infty,\;x:-\infty\rightarrow\infty
\\&&\;\cdots\;u=zなので,\;z:0\rightarrow\infty,\;u:0\rightarrow\infty
\\&=&\int_{0}^{\infty}\int_{\infty}^{-\infty}
\frac{1}{\sqrt{2\pi}}e^{-\frac{\left(x\sqrt{\frac{u}{n}}\right)^2}{2}}
\frac{1}{2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}e^{-\frac{u}{2}}u^{\frac{n}{2}-1}
\sqrt{\frac{u}{n}}
\mathrm{d}x\mathrm{d}u
\\&=&
\frac{1}{\sqrt{2\pi}}
\frac{1}{2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\frac{1}{\sqrt{n}}
\int_{0}^{\infty}\int_{\infty}^{-\infty}
e^{-\frac{x^2u}{2n}}
e^{-\frac{u}{2}}
u^{\frac{n}{2}-1}
\sqrt{u}
\mathrm{d}x\mathrm{d}u
\\&=&
\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\int_{0}^{\infty}\int_{\infty}^{-\infty}
e^{-\frac{x^2u}{2n}-\frac{u}{2}}
u^{\frac{n}{2}-1+\frac{1}{2}}
\mathrm{d}x\mathrm{d}u
\\&=&
\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\int_{0}^{\infty}\int_{\infty}^{-\infty}
e^{-\frac{u}{2}\left(\frac{x^2}{n}+1\right)}
u^{\frac{n+1}{2}-1}
\mathrm{d}x\mathrm{d}u
\\&=&1\;\cdots\;全事象
\\&=&F_{XU}\left(x,u\right)
\end{eqnarray}
\(f_X\left(x\right)\), \(X\)の確率密度凾数
\begin{eqnarray}
f_{XU}\left(x,u\right)
&=&\frac{\partial^2}{\partial x \partial u}F_{XU}\left(x,u\right)
\\&=&\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
e^{-\frac{u}{2}\left(1+\frac{x^2}{n}\right)}
u^{\frac{n+1}{2}-1}
\end{eqnarray}
\(X\)の確率密度凾数\(f_X\left(x\right)\)がすなわち\(t\)分布なので,uについて積分することで周辺確率を求めます.
\begin{eqnarray}
t(x)=f_X(x)&=&\int_{0}^{\infty}f_{XU}\left(x,u\right)\mathrm{d}u
\\&=&\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\int_{0}^{\infty}
e^{-\frac{u}{2}\left(\frac{x^2}{n}+1\right)}
u^{\frac{n+1}{2}-1}
\mathrm{d}u
\\&=&\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\int_{0}^{\infty}
e^{-t}
\cdot\left(\frac{2t}{\frac{x^2}{n}+1}\right)^{\frac{n+1}{2}-1}
\cdot\frac{2}{\frac{x^2}{n}+1}\mathrm{d}t
\\&&\;\cdots\;t=\frac{u}{2}\left(\frac{x^2}{n}+1\right)
\\&&\;\cdots\;u:0\rightarrow\infty,t:0\rightarrow\infty
\\&&\;\cdots\;u=\frac{2t}{\frac{x^2}{n}+1}
\\&&\;\cdots\;\frac{\mathrm{d}u}{\mathrm{d}t}=\frac{2}{\frac{x^2}{n}+1}
\\&&\;\cdots\;\mathrm{d}u=\frac{2}{\frac{x^2}{n}+1}\mathrm{d}t
\\&=&\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\frac{2}{\frac{x^2}{n}+1}
\left(\frac{2}{\frac{x^2}{n}+1}\right)^{\frac{n+1}{2}-1}
\int_{0}^{\infty}
e^{-t}
t^{\frac{n+1}{2}-1}
\mathrm{d}t
\\&=&\frac{1}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
\left(\frac{2}{\frac{x^2}{n}+1}\right)^{\frac{n+1}{2}}
\Gamma{\left(\frac{n+1}{2}\right)}
\\&=&\frac{\Gamma{\left(\frac{n+1}{2}\right)}}{\sqrt{2\pi n}\;2^{\frac{n}{2}}\Gamma{\left(\frac{n}{2}\right)}}
2^{\frac{n+1}{2}} \left(\frac{x^2}{n}+1\right)^{-\frac{n+1}{2}}
\\&=&\frac{\Gamma{\left(\frac{n+1}{2}\right)}}{\sqrt{\cancel{2}\pi n}\;\cancel{2^{\frac{n}{2}}}\Gamma{\left(\frac{n}{2}\right)}}
\cancel{2^{\frac{n}{2}}}\cancel{2^{\frac{1}{2}}}\left(\frac{x^2}{n}+1\right)^{-\frac{n+1}{2}}
\\&=&\frac{\Gamma{\left(\frac{n+1}{2}\right)}}{\sqrt{\pi n}\Gamma{\left(\frac{n}{2}\right)}}
\left(\frac{x^2}{n}+1\right)^{-\frac{n+1}{2}}
\\&=&\frac{1}{\sqrt{n}}\frac{\Gamma{\left(\frac{n+1}{2}\right)}}{\sqrt{\pi}\;\Gamma{\left(\frac{n}{2}\right)}}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\\&=&\frac{1}{\sqrt{n}}
\frac{
\Gamma{
\left(\frac{n+1}{2}\right)
}
}{
\Gamma{
\left(\frac{1}{2}\right)
}
\Gamma{
\left(\frac{n}{2}\right)
}
}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\;\cdots\;\Gamma{
\left(\frac{1}{2}\right)
}=\sqrt{\pi}
\\&=&\frac{1}{\sqrt{n}}
\frac{
\Gamma{
\left(\frac{1}{2}+\frac{n}{2}\right)
}
}{
\Gamma{
\left(\frac{1}{2}\right)
}
\Gamma{
\left(\frac{n}{2}\right)
}
}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\\&=&\frac{1}{\sqrt{n}}
\frac{1}
{
\beta{
\left(\frac{1}{2},\frac{n}{2}\right)
}
}
\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/05/blog-post_22.html}{
\beta{\left(a,b\right)}=\frac{
\Gamma{\left(a\right)}
\Gamma{\left(b\right)}
}{
\Gamma{
\left(a+b\right)
}
}=\int_0^1 x^{a-1}(1-x)^{b-1}\mathrm{d}x}
\end{eqnarray}
0 件のコメント:
コメントを投稿