間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

t分布の期待値と分散

t分布の期待値

E[X]=x1n1β(12,n2)(1+x2n)n+12dxt:1n1β(12,n2)(1+x2n)n+12=1n1β(12,n2)x(1+x2n)n+12dx (x)=x(1+x2n)n+12(x)=(x)(1+(x)2n)n+12=x(1+x2n)n+12=(x) E[X]=1n1β(12,n2)x(1+x2n)n+12dx=1n1β(12,n2)00aaf(x)dx=0,f(x)=0

t分布の分散

E[X2]=x21n1β(12,n2)(1+x2n)n+12dx=1n1β(12,n2)x2(1+x2n)n+12dx (x)=x2(1+x2n)n+12(x)=(x)2(1+(x)2n)n+12=x2(1+x2n)n+12=(x) E[X2]=1n1β(12,n2)x2(1+x2n)n+12dx=20x21n1β(12,n2)(1+x2n)n+12dx20af(x)dxaaf(x)dx=20af(x)dx,f(x)=210(n(t11))1n1β(12,n2)(1+n(t11)n)n+12n1212(t11)12(t2)dtx2=n(t11)x=n12(t11)12=n12s12s=t11x:0,t:10dxdt=dxdsdsdt=n1212s121dsdt=n1212(t11)12(t2)=21n1β(12,n2)12nn12(1)10(1+n(t11)n)n+12(t11)112t2dt=nβ(12,n2)01(1+t11)n+12(t11)12t2dt=nβ(12,n2)01tn+12(t11)12t2dt=nβ(12,n2)01tn232(tt(t11))12dt=nβ(12,n2)01tn232(1t(1t))12dt=nβ(12,n2)01tn232(1t)12(1t)12dt=nβ(12,n2)01tn232t12(1t)12dt=nβ(12,n2)01tn242(1t)12dt=nβ(12,n2)01tn211(1t)321dt=nΓ(12)Γ(n2)Γ(12+n2)Γ(n21)Γ(32)Γ(n21+32)β(a,b)=Γ(a)Γ(b)Γ(a+b)=01xa1(1x)b1dx=nΓ(12+n2)Γ(12)Γ(n2)Γ(n21)Γ(32)Γ(n2+12)=n1Γ(12)(n21)Γ(n21)Γ(n21)12Γ(12)1Γ(z+1)=zΓ(z)=n1(n21)121=nn2 V[X]=E[X2]E[X]2=nn202=nn2

t分布の導出

X=YZn, t分布の確率変数

t分布は次の確率変数Xを考えます. X=YZnYRMS[Y]Y:fY(y)=12πey22z()Z:fZ(z)=12n2Γ(n2)ez2zn21χ2(Z=i=1nYi2)

fYZ(y,z), YZの同時確率

fYZ(y,z)=fY(y)fZ(z)YZ

変数変換, YZからXU

x=yzny=xzn {z=uy=xun J=|(y,z)(x,u)|=|yxyuzxzu|=|unxn12u1201|=un1xn12u120=un 0fY(y)fZ(z)dydzY,Z=0fY(xun)fZ(u)undxdu:y=xun,z=u,J=unx=yun,y:,x:u=z,z:0,u:0=012πe(xun)2212n2Γ(n2)eu2un21undxdu=12π12n2Γ(n2)1n0ex2u2neu2un21udxdu=12πn2n2Γ(n2)0ex2u2nu2un21+12dxdu=12πn2n2Γ(n2)0eu2(x2n+1)un+121dxdu=1=FXU(x,u)

fX(x), Xの確率密度凾数

fXU(x,u)=2xuFXU(x,u)=12πn2n2Γ(n2)eu2(1+x2n)un+121 Xの確率密度凾数fX(x)がすなわちt分布なので,uについて積分することで周辺確率を求めます. t(x)=fX(x)=0fXU(x,u)du=12πn2n2Γ(n2)0eu2(x2n+1)un+121du=12πn2n2Γ(n2)0et(2tx2n+1)n+1212x2n+1dtt=u2(x2n+1)u:0,t:0u=2tx2n+1dudt=2x2n+1du=2x2n+1dt=12πn2n2Γ(n2)2x2n+1(2x2n+1)n+1210ettn+121dt=12πn2n2Γ(n2)(2x2n+1)n+12Γ(n+12)=Γ(n+12)2πn2n2Γ(n2)2n+12(x2n+1)n+12=Γ(n+12)2πn2n2Γ(n2)2n2212(x2n+1)n+12=Γ(n+12)πnΓ(n2)(x2n+1)n+12=1nΓ(n+12)πΓ(n2)(1+x2n)n+12=1nΓ(n+12)Γ(12)Γ(n2)(1+x2n)n+12Γ(12)=π=1nΓ(12+n2)Γ(12)Γ(n2)(1+x2n)n+12=1n1β(12,n2)(1+x2n)n+12β(a,b)=Γ(a)Γ(b)Γ(a+b)=01xa1(1x)b1dx