間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

x^3・exp(-α x^2)の広義積分[0,∞]

0x3eαx2dx

0x3eαx2dx=0(tα)2et12αtdtt=αx2,x=0t=0,x=t=,x=tα(x0(?))x3=(tα)3=(tα)32dtdx=2αx,dx=12αxdt=12αtαdt=12αtdt=0(tα)32et12αtdt=12α32α0t32tetdt=12α20tetdt=12α20t21etdt=12α2Γ(2)Γ(z)=0tz1etdt(Re(z)>0)=12α2(21)!Γ(n)=(n1)!(n)=12α21=12α2

x^4・exp(-α x^2) の広義積分[0,∞]

0x4eαx2dx

0x4eαx2dx=0(tα)2et12αtdtt=αx2,x=0t=0,x=t=,x2=tα,x4=x22=(tα)2x=tα(x0(?))dtdx=2αx,dx=12αxdt=12αtαdt=12αtdt=0(tα)2et12αtdt=12α2α0t2tetdt=12α2α0t2t12etdt=12α2α0t32etdt=12α2α0t521etdt=12α2αΓ(52)Γ(z)=0tz1etdt(Re(z)>0)=12α2αΓ(12+2)=12α2α(221)!!22πΓ(12+n)=(2n1)!!2nπ(!!)(n)=12α2α3!!4π=12α2α314πn1nn=12α2α3π4=38α2πα

逆行列の補題 / matrix inversion lemma / Sherman–Morrison–Woodbury formula

逆行列の補題 / matrix inversion lemma / Sherman–Morrison–Woodbury formula

A:n×nmatrixC:k×kmatrixU:k×nmatrixV:n×kmatrix の時, (A+UCV)1=A1A1U(C1+VA1U)1VA1

(A+UCV)()=In

(A+UCV)()=(A+UCV){A1A1U(C1+VA1U)1VA1}=(A+UCV)A1(A+UCV){A1U(C1+VA1U)1VA1}=AA1+UCVA1A{A1U(C1+VA1U)1VA1}UCV{A1U(C1+VA1U)1VA1}=In+UCVA1AA1U(C1+VA1U)1VA1UCVA1U(C1+VA1U)1VA1=In+U{C(C1+VA1U)1}VA1UCVA1U(C1+VA1U)1VA1=In+UC{(C1+VA1U)C1}(C1+VA1U)1VA1UCVA1U(C1+VA1U)1VA1XY1=XYY1XX1Y1=X(YX1)Y1=In+UC(VA1U)(C1+VA1U)1VA1UCVA1U(C1+VA1U)1VA1=In+UCVA1U(C1+VA1U)1VA1UCVA1U(C1+VA1U)1VA1=In

()(A+UCV)=In

()(A+UCV)={A1A1U(C1+VA1U)1VA1}(A+UCV)=A1A+A1UCVA1U(C1+VA1U)1VA1AA1U(C1+VA1U)1VA1UCV=In+A1UCVA1U(C1+VA1U)1VA1U(C1+VA1U)1VA1UCV=In+A1UCVA1U(C1+VA1U)1VA1U(C1+VA1U)1VA1UCV=In+A1U{C(C1+VA1U)1}VA1U(C1+VA1U)1VA1UCV=In+A1U(C1+VA1U)1{(C1+VA1U)C1}CVA1U(C1+VA1U)1VA1UCVXY1=Y1YXY1X1X=Y1(YX1)X=In+A1U(C1+VA1U)1(VA1U)CVA1U(C1+VA1U)1VA1UCV=In+A1U(C1+VA1U)1VA1UCVA1U(C1+VA1U)1VA1UCV=In

以上より

以上より右辺(A1A1U(C1+VA1U)1VA1)A+UCVの逆行列である.

C=Ikの時

またC=Ikの時は,C1=Ikでもあるので, (A+UV)1=A1A1U(Ik+VA1U)1VA1 となる.