ラプラス変換
$$\begin{eqnarray}
\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\end{eqnarray}$$
\( \sin{\left(\omega t\right)} \)のラプラス変換
$$\begin{eqnarray}
f\left( t \right)&=&\sin{\left(\omega t\right)}
\\\mathfrak{L}\left[ {f\left( t \right)} \right]
&=& \int_0^\infty {\sin{\left(\omega t\right)}{e^{ –st}}}\mathrm{d}t
\\&=& \left[ \sin{\left(\omega t\right)} \cdot {\frac{–1}{s}e^{-st}} \right]_0^{\infty}
-\int_0^\infty {\omega \cos{\left(\omega t\right)} \cdot {\frac{–1}{s}e^{–st}}}\mathrm{d}t
\\&&\;\cdots\;\int_a^b{f'\left( t \right) g\left( t \right) }\mathrm{d}t=\left[f\left( t \right) g\left( t
\right)\right]_a^b-\int_a^b{f\left( t \right) g'\left( t \right) }\mathrm{d}t\;\;(f':fの微分,\;g':gの部分)
\\&&\;\cdots\;\int e^{at} \mathrm{d}t =\frac{1}{a}e^{at}+C,
\frac{\mathrm{d}}{\mathrm{d}t}\sin{\left(\omega t\right)}=\omega \cos{\left(\omega t\right)}
\\&=& \left[ \sin{\left(\omega \infty\right)} \cdot {\frac{–1}{s}e^{-s\infty}} - \sin{\left(\omega 0\right)}
\cdot {\frac{–1}{s}e^{-s0}}\right]
-\left(\frac{-\omega}{s}\right)\int_0^\infty {\cos{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\\&=& \left[ 0 - 0\right] +\frac{\omega}{s}\int_0^\infty {\cos{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\\&&\;\cdots\;e^{-\infty}=0,\;\sin{\left( 0\right)}=0
\\&=& \frac{\omega}{s}\int_0^\infty {\cos{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\\&=& \frac{\omega}{s}\left[
\left[ \cos{\left(\omega t\right)} \cdot {\frac{–1}{s}e^{-st}} \right]_0^{\infty}
-\int_0^\infty {-\omega \sin{\left(\omega t\right)} \cdot {\frac{–1}{s}e^{–st}}}\mathrm{d}t
\right]
\\&&\;\cdots\;\int_a^b{f'\left( t \right) g\left( t \right) }\mathrm{d}t=\left[f\left( t \right) g\left( t
\right)\right]_a^b-\int_a^b{f\left( t \right) g'\left( t \right) }\mathrm{d}t\;\;(f':fの微分,\;g':gの微分)
\\&&\;\cdots\;\int e^{at} \mathrm{d}t =\frac{1}{a}e^{at}+C,
\frac{\mathrm{d}}{\mathrm{d}t}\cos{\left(\omega t\right)}=-\omega \sin{\left(\omega t\right)}
\\&=& \frac{\omega}{s}\left[ \left[ \cos{\left(\omega \infty\right)} \cdot {\frac{–1}{s}e^{-s\infty}} -
\cos{\left(\omega 0\right)}
\cdot {\frac{–1}{s}e^{-s0}}\right]
-\frac{\omega}{s}\int_0^\infty {\sin{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\right]
\\&=& \frac{\omega}{s}\left[ \left[0 - 1 \cdot \frac{–1}{s}\cdot 1\right]
-\frac{\omega}{s}\int_0^\infty {\sin{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\right]
\\&&\;\cdots\;e^{-\infty}=0,\; \cos{\left( 0\right)}=1,\; e^{0}=1
\\&=& \frac{\omega}{s}\left[ \frac{1}{s}
-\frac{\omega}{s}\int_0^\infty {\sin{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\right]
\\&=& \frac{\omega}{s^2}-\frac{\omega^2}{s^2}\int_0^\infty {\sin{\left(\omega t\right)} {e^{–st}}}\mathrm{d}t
\\&=& \frac{\omega}{s^2}-\frac{\omega^2}{s^2}\mathfrak{L}\left[ {f\left( t \right)} \right]
\\\mathfrak{L}\left[ {f\left( t \right)} \right]+\frac{\omega^2}{s^2}\mathfrak{L}\left[ {f\left( t \right)}
\right] &=& \frac{\omega}{s^2}
\\\mathfrak{L}\left[ {f\left( t \right)} \right]\left(1+\frac{\omega^2}{s^2}\right) &=& \frac{\omega}{s^2}
\\\mathfrak{L}\left[ {f\left( t \right)} \right]&=& \frac{\omega}{s^2}\frac{1}{1+\frac{\omega^2}{s^2}}
\\&=&\frac{\omega}{s^2\left(1+\frac{\omega^2}{s^2}\right)}
\\&=&\frac{\omega}{s^2+\omega^2}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿