間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バネマスダンパー系,過減衰の式からの他の式の導出

バネマスダンパー系

運動方程式

$$\begin{eqnarray} m\frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&c\frac{\mathrm{d}x}{\mathrm{d}t} &+&kx &=&0 \;\ldots\;m:マス,\;c:ダンパー,\;バネ \\\frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&\frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t} &+&\frac{k}{m}x &=&0 \\\frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} &+&\omega_0^2x &=&0 \;\ldots\;\gamma=\frac{c}{2m},\;\omega_0=\sqrt{\frac{k}{m}} \end{eqnarray}$$

単振動,振動減衰,臨界減衰,過減衰

\(\gamma=\frac{c}{2m},\;\omega_0=\sqrt{\frac{k}{m}},\;x_0=x\left(0\right),\;v_0=\left.\frac{\mathrm{d}x(t)}{\mathrm{d}t}\right|_{t=0}\)
\(\gamma\) \(\zeta=\frac{\gamma}{\omega_0}\) \(\xi=\omega_0\sqrt{\zeta^2-1}\) \(e^{-\gamma t}\left[x_0 \cosh\left(\xi t\right)+\frac{v_0 +\gamma x_0 }{\xi}\sinh{\left(\xi t \right)}\right]\) \(x(t)\)
単振動 \(0\) \(0\) \(\omega_0i\) \(e^{-\color{red}{0}\color{black}{t}}\left[x_0 \cosh\left(\color{red}{\omega_0 i}\color{black}{t}\right)+\frac{v_0 +\color{red}{0}\color{black}{ x_0} }{\color{red}{\omega_0 i}} \sinh{\left(\color{red}{\omega_0 i}\color{black}{t}\right)}\right]\) \(x_0 \cos\left(\omega_0 t\right)+\frac{v_0}{\omega_0 } \sin{\left(\omega_0 t \right)}\)
振動減衰 \(0\lt\gamma\lt\omega_0\) \(0\lt\zeta\lt1\) \(\omega i\)
\(ただし0\lt\omega\lt1\)
\(e^{-\color{red}{\gamma}\color{black}{t}}\left[x_0 \cosh\left(\color{red}{\omega i}\color{black}{t}\right)+\frac{v_0 +\color{red}{\gamma}\color{black}{x_0} }{\color{red}{\omega i}}\sinh{\left(\color{red}{\omega i}\color{black}{t}\right)}\right]\) \(e^{-\gamma t}\left[x_0 \cos\left(\omega i t \right)+\frac{v_0 +\gamma x_0 }{\omega } \sin{\left(\omega t \right)}\right]\)
臨界減衰 \(\omega_0\) \(1\) \(0\) \(e^{-\color{red}{\gamma}\color{black}{t}}\left[x_0 \color{red}{\left(1+\frac{1}{2!}\left(\xi t\right)^2+\cdots\right)} \color{black}{+}\frac{v_0 +\color{red}{\gamma}\color{black}{x_0} }{\xi} \color{red}{\left( \xi t + \frac{1}{3!}\left(\xi t\right)^3 + \cdots\right)} \right]\) \(e^{-\gamma t}\left[x_0 +\left(v_0 +\gamma x_0\right) t\right]\)
過減衰 \(\omega_0\lt\gamma\) \(1\lt\zeta\) \(\omega\)
\(ただし1\lt\omega\)
\(e^{-\color{red}{\gamma}\color{black}{t}}\left[x_0 \cosh\left(\color{red}{\omega}\color{black}{t}\right)+\frac{v_0 +\color{red}{\gamma}\color{black}{x_0} }{\color{red}{\omega}}\sinh{\left(\color{red}{\omega}\color{black}{t}\right)}\right]\) \(e^{-\gamma t}\left[x_0 \cosh\left(\omega t\right)+\frac{v_0 +\gamma x_0 }{\omega}\sinh{\left(\omega t \right)}\right]\)

過減衰の式

$$\begin{eqnarray} x(t)&=&\href{https://shikitenkai.blogspot.com/2021/04/0_17.html}{e^{-\gamma t}\left[x_0 \cosh\left(\xi t\right)+\frac{v_0 +\gamma x_0 }{\xi}\sinh{\left(\xi t \right)}\right]}\;\ldots\;(\href{https://shikitenkai.blogspot.com/2021/04/0_17.html}{導出}) \end{eqnarray}$$

\(\omega_0\lt\gamma\)

$$\begin{eqnarray} x(t)&=&\left.e^{-\gamma t}\left[x_0 \cosh\left(\xi t\right)+\frac{v_0 +\gamma x_0 }{\xi}\sinh{\left(\xi t \right)}\right]\right|_{1\lt\gamma,\;\xi=\omega} \\&&\;\ldots\;\omega_0\lt\gamma,\;1\lt\zeta,\;\xi=\omega_0\sqrt{\zeta^2-1}=\omega \\&&\;\ldots\;\omega=\omega_0\sqrt{\left|\zeta^2-1\right|} \\&=&e^{-\gamma t}\left[x_0 \cosh\left(\omega t\right)+\frac{v_0 +\gamma x_0 }{\omega}\sinh{\left(\omega t \right)}\right] \end{eqnarray}$$

\(0\lt\gamma\lt\omega_0\)

$$\begin{eqnarray} \\x(t)&=&\left.e^{-\gamma t}\left[x_0 \cosh\left(\xi t\right)+\frac{v_0 +\gamma x_0 }{\xi}\sinh{\left(\xi t \right)}\right]\right|_{0\lt\gamma\lt1,\;\xi=\omega i} \\&&\;\ldots\;0\lt\gamma\lt\omega_0,\;0\lt\zeta\lt1,\;\xi=\omega_0\sqrt{\zeta^2-1}=\omega i \\&&\;\ldots\;\omega=\omega_0\sqrt{\left|\zeta^2-1\right|} \\&=&e^{-\gamma t}\left[x_0 \cosh\left(\omega i t\right)+\frac{v_0 +\gamma x_0 }{\omega i}\sinh{\left(\omega i t \right)}\right] \\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/coshi-x-sinhi-x-cosh-sinh.html}{\cosh{\left(i x\right)}=\cos{\left(x\right)},\;\sinh{\left(i x\right)}=i\sin{\left(x\right)}} \\&=&e^{-\gamma t}\left[x_0 \cos\left(\omega t\right)+\frac{v_0 +\gamma x_0 }{\omega i} i \sin{\left(\omega t \right)}\right] \\&=&e^{-\gamma t}\left[x_0 \cos\left(\omega t\right)+\frac{v_0 +\gamma x_0 }{\omega } \sin{\left(\omega t \right)}\right] \end{eqnarray}$$

\(\gamma=0\)

$$\begin{eqnarray} \\x(t)&=&\left.e^{-\gamma t}\left[x_0 \cosh\left(\xi t\right)+\frac{v_0 +\gamma x_0 }{\xi}\sinh{\left(\xi t \right)}\right]\right|_{\gamma=0,\;\xi=\omega_0 i} \\&&\;\ldots\;\gamma=0,\;\zeta=0,\;\xi=\omega_0\sqrt{0-1}=\omega_0 i \\&&\;\ldots\;\omega=\omega_0\sqrt{\left|\zeta^2-1\right|} \\&=&e^{-0 t}\left[x_0 \cosh\left(\omega_0 i t\right)+\frac{v_0 +0 x_0 }{\omega_0 i} \sinh{\left(\omega_0 i t \right)}\right] \\&=&x_0 \cos\left(\omega_0 t\right)+\frac{v_0 }{\omega_0 i} i \sin{\left(\omega_0 t \right)} \\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/coshi-x-sinhi-x-cosh-sinh.html}{\cosh{\left(i x\right)}=\cos{\left(x\right)},\;\sinh{\left(i x\right)}=i\sin{\left(x\right)}} \\&&\;\ldots\;e^0=1 \\&=&x_0 \cos\left(\omega_0 t\right)+\frac{v_0}{\omega_0 } \sin{\left(\omega_0 t \right)} \end{eqnarray}$$

\(\gamma\rightarrow\omega_0\)

$$\begin{eqnarray} \\x(t)&=&\lim_{\gamma\rightarrow\omega_0,\;\xi \rightarrow 0}{e^{-\gamma t}\left[x_0 \cosh\left(\xi t\right)+\frac{v_0 +\gamma x_0 }{\xi}\sinh{\left(\xi t \right)}\right]} \\&&\;\ldots\;\gamma\rightarrow\omega_0,\;\zeta\rightarrow1,\;\xi\rightarrow0 \\&=&\lim_{\gamma\rightarrow\omega_0,\;\xi \rightarrow 0} {e^{-\gamma t}\left[ x_0 \left(1+\frac{1}{2!}\left(\xi t\right)^2+\cdots\right) +\frac{v_0 +\gamma x_0 }{\xi} \left( \xi t + \frac{1}{3!}\left(\xi t\right)^3 + \cdots\right) \right]} \\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/coshx.html}{\cosh\left(\xi t\right)=\frac{1}{0!}\left(\xi t\right)^0+\frac{1}{2!}\left(\xi t\right)^2+\cdots} ,\;\href{https://shikitenkai.blogspot.com/2021/04/sinhx.html}{\sinh{\left(\xi t \right)}=\frac{1}{1!}\left(\xi t\right)^1 + \frac{1}{3!}\left(\xi t\right)^3 + \cdots} \\&=&\lim_{\gamma\rightarrow\omega_0,\;\xi \rightarrow 0} {e^{-\gamma t}\left[ x_0 \left(1+\frac{1}{2!}\left(\xi t\right)^2+\cdots\right) +\left(v_0 +\gamma x_0\right) \left( t + \frac{1}{3!}\xi^2 t^3 + \cdots\right) \right]} \\&=&e^{-\omega_0 t}\left[ x_0 \cdot \left(1\right) +\left(v_0 +\omega_0 x_0\right) \cdot \left( t \right) \right] \\&=&e^{-\omega_0 t}\left[x_0 +\left(v_0 +\omega_0 x_0\right) t\right] \\&=&e^{-\gamma t}\left[x_0 +\left(v_0 +\gamma x_0\right) t\right] \end{eqnarray}$$

0 件のコメント:

コメントを投稿