バネマスダンパー系
運動方程式
$$\begin{eqnarray}
\ddot{x}
&+&\frac{c}{m}\dot{x}
&+&\frac{k}{m}x
&=&0
\\
\frac{\mathrm{d^2}x}{\mathrm{d^2}t}
&+&\frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t}
&+&\frac{k}{m}x
&=&0
\end{eqnarray}$$
ラプラス変換と計算
$$\begin{eqnarray}
\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t}
\right.&+&\left.\frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t}
\right.&+&\left.\frac{k}{m}x \right]&=0
\\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right]
&+&\mathfrak{L}\left[ \frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t} \right]
&+&\mathfrak{L}\left[ \frac{k}{m}x\right]
&=0
\;\ldots\;
\href{https://shikitenkai.blogspot.com/2021/04/gtb-ht.html}{
\mathfrak{L}\left[ a g(t)+b h(t) \right]=a\mathfrak{L}\left[ {g\left( t \right)} \right] + b\mathfrak{L}\left[ {h\left( t \right)} \right]
}
\\
s^2X-sx_0 -v_0
&+&\frac{c}{m}\left(sX-x_0 \right)
&+&\frac{k}{m}X
&=0
\\
\\&&&&&\;\ldots\;\mathfrak{L}\left[x\right]=X
\\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/fracmathrmdfmathrmdt.html}{\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t}\right]
=s^2X-x_0,\;x_0=x(0)}
\\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/blog-post_62.html}{\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t}\right]
=s^2X-sx_0 -v_0,\;v_0=x'(0)}
\\
s^2X-sx_0 -v_0
&+&s\frac{c}{m}X-\frac{c}{m}x_0
&+&\frac{k}{m}X
&=0
\end{eqnarray}$$
$$\begin{eqnarray}
s^2X+s\frac{c}{m}X+\frac{k}{m}X
&=&
sx_0 +v_0
+\frac{c}{m}x_0
\\
\left(s^2+s\frac{c}{m}+\frac{k}{m}\right)X
&=&
sx_0 +v_0 +\frac{c}{m}x_0
\\
X&=&\frac{sx_0 +v_0 +\frac{c}{m}x_0 }{s^2+s\frac{c}{m}+\frac{k}{m}}
\\&=&\frac{sx_0 +v_0 +\frac{c}{m}x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}
\;\ldots\;\lambda_{1,2}=s^2+s\frac{c}{m}+\frac{k}{m}の解
\\&=&\frac{C_1 }{s-\lambda_1}+\frac{C_2 }{s-\lambda_2}
\\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}
\\&=&\frac{(C_1 +C_2 )s-(C_1 \lambda_2+C_2 \lambda_1)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}
\end{eqnarray}$$
逆ラプラス変換
$$\begin{eqnarray}
\mathfrak{L}^{-1}\left[X\right]&=&\mathfrak{L}^{-1}\left[C_1 \frac{1}{s-\lambda_1}+C_2 \frac{1}{s-\lambda_2}\right]
\\&=&C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right]+C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right]
\\x(t)&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t}
\\&&\;\ldots\;\mathfrak{L}^{-1}\left[X\right]=x(t)
\\&&\;\ldots\;\mathfrak{L}^{-1}\left[ \frac{1}{s+a} \right]=e^{-at}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿