間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

単回帰モデルの最尤推定量の期待値,分散,分布

単回帰モデルの最尤推定量の期待値,分散,分布

単回帰モデル

$$ \begin{eqnarray} y_i&=&\alpha+\beta x_i+\epsilon_i \;(i=1,\cdots,n) \\&&\epsilon_i \overset{iid}{\sim} N(0,\sigma^2)\;\cdots\;独立同一分布(independent\;and\;identically\;distributed;\;IID,\;i.i.d.,\;iid) \end{eqnarray} $$ \(\alpha,\beta,\sigma^2\)の推定量を\(\hat{\alpha},\hat{\beta},\hat{\sigma}^2\)とし,\(\hat{\alpha},\hat{\beta},\hat{\sigma}^2\)の最尤推定量(maximum likelihood estimator)を\(\hat{\alpha}_{ML},\hat{\beta}_{ML},\hat{\sigma}^2_{ML}\)とする.

\(\hat{\beta}_{ML}\)の期待値

$$ \begin{eqnarray} \mathrm{E}\left[\hat{\beta}_{ML}\right]&=&\mathrm{E}\left[\hat{\beta}\right] \;\cdots\;\hat{\beta}_{ML}=\hat{\beta} \\&=&\beta \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2.html}{\mathrm{E}\left[\hat{\beta}\right]=\beta} \\&&\;\cdots\;よって\hat{\beta}_{ML}^2は\beta^2の不偏推定量で\mathbf{ある}. \end{eqnarray} $$

\(\hat{\alpha}_{ML}\)の期待値

$$ \begin{eqnarray} \mathrm{E}\left[\hat{\alpha}_{ML}\right]&=&\mathrm{E}\left[\hat{\alpha}\right] \;\cdots\;\hat{\alpha}_{ML}=\hat{\alpha} \\&=&\alpha \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2.html}{\mathrm{E}\left[\hat{\alpha}\right]=\alpha} \\&&\;\cdots\;よって\hat{\alpha}_{ML}^2は\alpha^2の不偏推定量で\mathbf{ある}. \end{eqnarray} $$

\(\hat{\beta}_{ML}\)の分散

$$ \begin{eqnarray} \mathrm{V}\left[\hat{\beta}_{ML}\right]&=&\mathrm{V}\left[\hat{\beta}\right] \\&=&\frac{1}{S_{xx}}\sigma^2 \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2variancecovariance.html}{\mathrm{V}\left[\hat{\beta}\right]=\frac{1}{S_{xx}}\sigma^2} \\&&\;\cdots\;\bar{x}=\frac{1}{n}\sum_{i=0}^{n}x_i,\;S_{xx}=\sum_{i=0}^{n}\left(x_i-\bar{x}\right)^2 \end{eqnarray} $$

\(\hat{\alpha}_{ML}\)の分散

$$ \begin{eqnarray} \mathrm{V}\left[\hat{\alpha}_{ML}\right]&=&\mathrm{V}\left[\hat{\alpha}\right] \\&=&\left(\frac{1}{n}+\frac{\bar{x}^2}{S_{xx}}\right)\sigma^2 \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2variancecovariance.html}{\mathrm{V}\left[\hat{\alpha}\right]=\left(\frac{1}{n}+\frac{\bar{x}^2}{S_{xx}}\right)\sigma^2} \end{eqnarray} $$

\(\hat{\alpha}_{ML},\hat{\beta}_{ML}\)の分布

$$ \begin{eqnarray} \hat{\beta}_{ML}&=&\hat{\beta}&\sim&\mathrm{N}\left(\beta,\;\frac{1}{S_{xx}}\sigma^2\right) \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post_29.html}{\hat{\beta}\sim\mathrm{N}\left(\beta,\;\frac{1}{S_{xx}}\sigma^2\right)} \\\hat{\alpha}_{ML}&=&\hat{\alpha}&\sim&\mathrm{N}\left(\alpha,\;\left(\frac{1}{n}+\frac{\bar{x}^2}{S_{xx}}\right)\sigma^2\right) \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post_29.html}{\hat{\alpha}\sim\mathrm{N}\left(\alpha,\;\left(\frac{1}{n}+\frac{\bar{x}^2}{S_{xx}}\right)\sigma^2\right)} \end{eqnarray} $$

\(\hat{\sigma}^2_{ML}\)の期待値

$$ \begin{eqnarray} \mathrm{E}\left[\hat{\sigma}_{ML}^2\right]&=&\mathrm{E}\left[\frac{n-2}{n}s^2\right] \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post_25.html}{\hat{\sigma}^2_{ML}=\frac{n-2}{n}s^2} ,\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post.html}{s^2=\frac{1}{\left(n-2\right)}\sum_{i=1}^{n} e_i^2} ,\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post.html}{\sum_{i=1}^{n}e_i^2=\sum_{i=1}^{n}\left(y_i-\hat{y_i}\right)^2} \\&=&\frac{n-2}{n}\mathrm{E}\left[s^2\right] \\&=&\frac{n-2}{n}\sigma^2 \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post.html}{\mathrm{E}\left[s^2\right]=\sigma^2} \\&\lt&\sigma^2 \;\cdots\;よって\hat{\sigma}_{ML}^2は\sigma^2の不偏推定量では\mathbf{ない}. \end{eqnarray} $$

0 件のコメント:

コメントを投稿