単回帰モデルの最小二乗推定量\(\hat{\alpha},\hat{\beta}\)の分布
単回帰モデル
$$
\begin{eqnarray}
y_i&=&\alpha+\beta x_i +\epsilon_i\;(i=1,\cdots,n)\;\dots\;\epsilon_i \overset{iid}{\sim} \mathrm{N}\left(0,\sigma^2\right)
\\\mathrm{E}\left[y_i\right]&=&\mathrm{E}\left[\alpha+\beta x_i +\epsilon_i\right]
\\&=&\alpha+\beta x_i +\mathrm{E}\left[\epsilon_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-expected.html}{\mathrm{E}\left[X+t\right]=\mathrm{E}\left[X\right]+t}
\\&=&\alpha+\beta x_i+0
\;\cdots\;\epsilon_i \overset{iid}{\sim} \mathrm{N}\left(0,\sigma^2\right)
\\&=&\alpha+\beta x_i
\\\mathrm{V}\left[y_i\right]&=&\mathrm{V}\left[\alpha+\beta x_i +\epsilon_i\right]
\\&=&\mathrm{V}\left[\epsilon_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-variance.html}{\mathrm{V}\left[X+t\right]=\mathrm{V}\left[X\right]}
\\&=&\sigma^2
\;\cdots\;\epsilon_i \overset{iid}{\sim} \mathrm{N}\left(0,\sigma^2\right)
\\y_i&\sim&\mathrm{N}(\alpha+\beta x_i,\sigma^2)
\end{eqnarray}
$$
\(y_i\)は\(\mathrm{N}\left(\alpha+\beta x_i,\sigma^2\right)\)に従う確率変数である.
\(\hat{\beta}\)を\(\sum_{i=1}^n c_iy_i\)の形で表す
推定量が\(\sum_{i=1}^n c_ix_i\;(x_i:標本,\;c_i:定数)\)の形で表現できるとき,この推定量を線形推定量(linear estimate)という.
(よく知られる線形推定量の例として平均\(\bar{x}\)があり,\(\bar{x}=\sum_{i=1}^n \frac{1}{n} x_i\)で表現される)
$$
\begin{eqnarray}
\hat{\beta}&=&\frac{S_{xy}}{S_{xx}}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{\hat{\beta}=\frac{S_{xy}}{S_{xx}}}
,\;S_{xx}=\sum_{i=1}^n\left(x_i-\bar{x}\right)^2,\;\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i
\\&=&\frac{1}{S_{xx}} \sum_{i=1}^n \left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)
\\&=&\frac{1}{S_{xx}} \sum_{i=1}^n \left(x_i-\bar{x}\right)y_i
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/10/sxy.html}{\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)=S_{xy}= \sum_{i=1}^n \left(x_i-\bar{x}\right)y_i}
\\&=& \sum_{i=1}^n \frac{x_i-\bar{x}}{S_{xx}}y_i
\\&=& \sum_{i=1}^n c_iy_i
\;\cdots\;c_i=\frac{x_i-\bar{x}}{S_{xx}}
\end{eqnarray}
$$
\(\hat{\beta}\)の期待値を\(\sum_{i=1}^n c_iy_i\)から求めてみる
$$
\begin{eqnarray}
\mathrm{E}\left[\sum_{i=1}^n c_iy_i\right]
&=&\mathrm{E}\left[\sum_{i=1}^n \frac{x_i-\bar{x}}{S_{xx}}y_i\right]
\\&=&\mathrm{E}\left[\frac{S_{xy}}{S_{xx}}\right]
\;\cdots\;上記,\;\frac{S_{xy}}{S_{xx}}=\sum_{i=1}^n \frac{x_i-\bar{x}}{S_{xx}}y_i
\\&=&\mathrm{E}\left[\hat{\beta}\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{\hat{\beta}=\frac{S_{xy}}{S_{xx}}}
\\&=&\beta
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2.html}{\mathrm{E}\left[\hat{\beta}\right]=\beta}
\end{eqnarray}
$$
\(\hat{\beta}\)の分散を\(\sum_{i=1}^n c_iy_i\)から求めてみる
$$
\begin{eqnarray}
\mathrm{V}\left[\sum_{i=1}^n c_iy_i\right]
&=&\mathrm{V}\left[\sum_{i=1}^n \frac{x_i-\bar{x}}{S_{xx}}y_i\right]
\\&=&\sum_{i=1}^n \mathrm{V}\left[\frac{x_i-\bar{x}}{S_{xx}}y_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-variance.html}{y_iは互いに独立\mathrm{Cov}\left[y_i, y_j\right]=0,\;互いに独立の場合\mathrm{V}\left[X+Y\right]=\mathrm{V}\left[X\right]+\mathrm{V}\left[Y\right]}
\\&=&\sum_{i=1}^n \left(\frac{x_i-\bar{x}}{S_{xx}}\right)^2\mathrm{V}\left[y_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-variance.html}{\mathrm{V}\left[cX\right]=c^2\mathrm{V}\left[X\right]}
\\&=&\sum_{i=1}^n \left(\frac{x_i-\bar{x}}{S_{xx}}\right)^2\sigma^2
\\&=&\frac{\sigma^2}{S_{xx}^2}\sum_{i=1}^n \left(x_i-\bar{x}\right)^2
\\&=&\frac{\sigma^2}{S_{xx}^2}S_{xx}
\;\cdots\;S_{xx}=\sum_{i=1}^n \left(x_i-\bar{x}\right)^2
\\&=&\frac{\sigma^2}{S_{xx}}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2variancecovariance.html}{\mathrm{V}\left[\frac{S_{xy}}{S_{xx}}\right]=\frac{\sigma^2}{S_{xx}}}と同じ結果
\end{eqnarray}
$$
\(\hat{\beta}\)の分布
以上のように,\(\hat{\beta}\)は線形推定量であり,正規分布に従う\(y_i\)の定数倍の和で表すことができた.よって\(\hat{\beta}\)は同様に正規分布に従い,その期待値と分散はそれぞれ上記で求めたとおりである
\(\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/zc1xc2y-2.html}{Z=c_1X+c_2Y(X\sim\mathrm{N}(\mu_1,\sigma_1^2),Y\sim\mathrm{N}(\mu_2,\sigma_2^2),Z\sim\mathrm{N}(c_1\mu_1+c_2\mu_2,c_1^2\sigma_1^2+c_2^2\sigma_2^2))}\).
$$
\begin{eqnarray}
\hat{\beta}&\sim& \mathrm{N}\left(\beta,\frac{\sigma^2}{S_{xx}}\right)
\end{eqnarray}
$$
\(\hat{\alpha}\)を\(\sum_{i=1}^n c_iy_i\)の形で表す
$$
\begin{eqnarray}
\hat{\alpha}&=&\bar{y}-\hat{\beta}\bar{x}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{\hat{\alpha}=\bar{y}-\hat{\beta}\bar{x}}
\\&=&\sum_{i=1}^n\frac{1}{n}y_i-\frac{S_{xy}}{S_{xx}}\bar{x}
\\&=&\sum_{i=1}^n\frac{1}{n}y_i-\left(\sum_{i=1}^n\frac{x_i-\bar{x}}{S_{xx}}y_i\right)\bar{x}
\;\cdots\;上記,\;\frac{S_{xy}}{S_{xx}}=\sum_{i=1}^n \frac{x_i-\bar{x}}{S_{xx}}y_i
\\&=&\sum_{i=1}^n\frac{1}{n}y_i-\bar{x}\sum_{i=1}^n\frac{x_i-\bar{x}}{S_{xx}}y_i
\\&=&\sum_{i=1}^n\frac{1}{n}y_i-\sum_{i=1}^n\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}y_i
\\&=&\sum_{i=1}^n\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)y_i
\\&=& \sum_{i=1}^n c_iy_i
\;\cdots\;c_i=\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}
\end{eqnarray}
$$
\(\hat{\alpha}\)の期待値を\(\sum_{i=1}^n c_iy_i\)から求めてみる
$$
\begin{eqnarray}
\mathrm{E}\left[\sum_{i=1}^n c_iy_i\right]
&=&\mathrm{E}\left[\sum_{i=1}^n\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)y_i\right]
\\&=&\mathrm{E}\left[\sum_{i=1}^n\left(\frac{1}{n}y_i-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}y_i\right)\right]
\\&=&\mathrm{E}\left[\sum_{i=1}^n\frac{1}{n}y_i-\sum_{i=1}^n\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}y_i\right]
\\&=&\mathrm{E}\left[\sum_{i=1}^n\frac{1}{n}y_i-\sum_{i=1}^n\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}y_i\right]
\\&=&\mathrm{E}\left[\sum_{i=1}^n\frac{1}{n}y_i\right]-\mathrm{E}\left[\sum_{i=1}^n\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}y_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-expected.html}{\mathrm{E}\left[X+Y\right]=\mathrm{E}\left[X\right]+\mathrm{E}\left[Y\right]}
\\&=&\mathrm{E}\left[\frac{1}{n}\sum_{i=1}^ny_i\right]-\mathrm{E}\left[\bar{x}\sum_{i=1}^n\frac{\left(x_i-\bar{x}\right)}{S_{xx}}y_i\right]
\\&=&\frac{1}{n}\mathrm{E}\left[\sum_{i=1}^ny_i\right]-\bar{x}\mathrm{E}\left[\sum_{i=1}^n\frac{\left(x_i-\bar{x}\right)}{S_{xx}}y_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-expected.html}{\mathrm{E}\left[cX\right]=c\mathrm{E}\left[X\right]}
\\&=&\frac{1}{n}\sum_{i=1}^n\mathrm{E}\left[y_i\right]-\bar{x}\mathrm{E}\left[\frac{S_{xy}}{S_{xx}}\right]
\;\cdots\;上記,\;\frac{S_{xy}}{S_{xx}}=\sum_{i=1}^n \frac{x_i-\bar{x}}{S_{xx}}y_i
\\&=&\frac{1}{n}\sum_{i=1}^n\left(\alpha+\beta x_i\right)-\bar{x}\mathrm{E}\left[\frac{S_{xy}}{S_{xx}}\right]
\;\cdots\;\mathrm{E}\left[y_i\right]=\alpha+\beta x_i
\\&=&\frac{1}{n}\left(\alpha\sum_{i=1}^n1+\beta\sum_{i=1}^n x_i\right)-\bar{x}\mathrm{E}\left[\hat{\beta}\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{\hat{\beta}=\frac{S_{xy}}{S_{xx}}}
\\&=&\frac{1}{n}\left(n\alpha+\beta\;n\bar{x}\right)-\bar{x}\beta
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2.html}{\mathrm{E}\left[\hat{\beta}\right]=\beta}
\\&=&\frac{1}{n}n\left(\alpha+\beta\bar{x}\right)-\bar{x}\beta
\\&=&\left(\alpha+\beta\bar{x}\right)-\bar{x}\beta
\\&=&\alpha
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2.html}{\mathrm{E}\left[\hat{\alpha}\right]=\alpha}
\end{eqnarray}
$$
\(\hat{\alpha}\)の分散を\(\sum_{i=1}^n c_iy_i\)から求めてみる
$$
\begin{eqnarray}
\mathrm{V}\left[\sum_{i=1}^n c_iy_i\right]
&=&\mathrm{V}\left[\sum_{i=1}^n\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)y_i\right]
\\&=&\sum_{i=1}^n\mathrm{V}\left[\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)y_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2variancecovariance.html}{\mathrm{V}\left[\frac{S_{xy}}{S_{xx}}\right]=\frac{\sigma^2}{S_{xx}}}と同じ結果
\\&=&\sum_{i=1}^n\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)^2\mathrm{V}\left[y_i\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/continuous-random-variable-variance.html}{\mathrm{V}\left[cX\right]=c^2\mathrm{V}\left[X\right]}
\\&=&\sum_{i=1}^n\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)^2\sigma^2
\\&=&\sigma^2\sum_{i=1}^n\left(\frac{1}{n}-\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)^2
\\&=&\sigma^2\sum_{i=1}^n\left(
\frac{1}{n^2}
-2\frac{1}{n}\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}
+\left(\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)^2
\right)
\\&=&\sigma^2\left(
\sum_{i=1}^n\frac{1}{n^2}
-\sum_{i=1}^n2\frac{1}{n}\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}
+\sum_{i=1}^n\left(\frac{\bar{x}\left(x_i-\bar{x}\right)}{S_{xx}}\right)^2
\right)
\\&=&\sigma^2\left(
\frac{1}{n^2}\sum_{i=1}^n1
-\frac{2\bar{x}}{nS_{xx}}\sum_{i=1}^n\left(x_i-\bar{x}\right)
+\frac{\bar{x}^2}{S_{xx}^2}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2
\right)
\\&=&\sigma^2\left(
\frac{1}{n^2}n
-\frac{2\bar{x}}{nS_{xx}}\cdot 0
+\frac{\bar{x}^2}{S_{xx}^2}S_{xx}
\right)
\\&=&\sigma^2\left(
\frac{1}{n^2}\cdot n
-\frac{2\bar{x}}{nS_{xx}}\cdot 0
+\frac{\bar{x}^2}{S_{xx}^2}\cdot S_{xx}
\right)
\\&=&\sigma^2\left(
\frac{1}{n}
+\frac{\bar{x}^2}{S_{xx}}
\right)
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/08/2variancecovariance.html}{\mathrm{V}\left[\bar{y}-\hat{\beta}\bar{x}\right]=\left(\frac{1}{n}+\frac{\bar{x}^2}{S_{xx}}\right)\sigma^2と同じ結果}
\end{eqnarray}
$$
\(\hat{\alpha}\)の分布
以上のように,\(\hat{\alpha}\)は線形推定量であり,正規分布に従う\(y_i\)の定数倍の和で表すことができた.よって\(\hat{\alpha}\)は同様に正規分布に従い,その期待値と分散はそれぞれ上記で求めたとおりである
\(\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/zc1xc2y-2.html}{Z=c_1X+c_2Y(X\sim\mathrm{N}(\mu_1,\sigma_1^2),Y\sim\mathrm{N}(\mu_2,\sigma_2^2),Z\sim\mathrm{N}(c_1\mu_1+c_2\mu_2,c_1^2\sigma_1^2+c_2^2\sigma_2^2))}\).
$$
\begin{eqnarray}
\hat{\alpha}&\sim& \mathrm{N}\left(\alpha,\sigma^2\left(
\frac{1}{n}
+\frac{\bar{x}^2}{S_{xx}}
\right)\right)
\end{eqnarray}
$$
0 件のコメント:
コメントを投稿