間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

√(x^2+a^2)の積分

$$ \begin{eqnarray} \int \sqrt{x^2+a^2} \mathrm{d}x &=&\int \sqrt{a^2\tan^2{\left(\theta\right)}+a^2}\;a\frac{1}{\cos^2{\left(\theta\right)}}\mathrm{d}\theta \;\cdots\; x=a\tan{\left(\theta\right)}, \frac{\mathrm{d}x}{\mathrm{d}\theta} =a\frac{\mathrm{d}}{\mathrm{d}\theta}\tan{\left(\theta\right)} =a\frac{1}{\cos^2{\left(\theta\right)}}, \mathrm{d}x=a\frac{1}{\cos^2{\left(\theta\right)}}\mathrm{d}\theta \\&=&a \int \sqrt{a^2\left\{\tan^2{\left(\theta\right)}+1\right\}}\;\frac{1}{\cos^2{\left(\theta\right)}}\mathrm{d}\theta \\&=&a \int a\sqrt{\tan^2{\left(\theta\right)}+1}\;\frac{1}{\cos^2{\left(\theta\right)}}\mathrm{d}\theta \\&=&a^2 \int \sqrt{\frac{1}{\cos^2{\left(\theta\right)}}}\;\frac{1}{\cos^2{\left(\theta\right)}}\mathrm{d}\theta \;\cdots\;\tan^2{\left(\theta\right)}+1 =\frac{\sin^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}}+1 =\frac{\sin^2{\left(\theta\right)}+\cos^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} =\frac{1}{\cos^2{\left(\theta\right)}} \\&=&a^2 \int \frac{1}{\cos{\left(\theta\right)}}\;\frac{1}{\cos^2{\left(\theta\right)}}\mathrm{d}\theta \\&=&a^2 \int \frac{1}{\cos^3{\left(\theta\right)}}\mathrm{d}\theta \\&=&a^2 \left[\frac{1}{2}\left\{ \tan{\left(\theta\right)}\frac{1}{\cos{\left(\theta\right)}} +\ln{\left|\tan{\left(\theta\right)}+\frac{1}{\cos{\left(\theta\right)}}\right|} \right\}+C_0 \right] \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/07/cossec_25.html}{\int \frac{1}{\cos^3{\left(\theta\right)}}\mathrm{d}\theta =\frac{1}{2}\left\{ \tan{\left(\theta\right)}\frac{1}{\cos{\left(\theta\right)}} +\ln{\left| \tan{\left(\theta\right)}+\frac{1}{\cos{\left(\theta\right)}} \right|} \right\}+C_0\;(C_0:積分定数)} \\&=&\frac{a^2}{2}\left\{ \tan{\left(\theta\right)}\frac{1}{\cos{\left(\theta\right)}} +\ln{\left|\tan{\left(\theta\right)}+\frac{1}{\cos{\left(\theta\right)}}\right|} +C_0 \right\} \\&=&\frac{1}{2}\left\{ a^2\tan{\left(\theta\right)}\frac{1}{\cos{\left(\theta\right)}} +a^2\ln{\left|\tan{\left(\theta\right)}+\frac{1}{\cos{\left(\theta\right)}}\right|} +a^2C_0 \right\} \\&=&\frac{1}{2}\left\{ a^2\;\frac{1}{a^2}x\sqrt{x^2+a^2} +a^2\ln{\left| \frac{1}{a}\left(x+\sqrt{x^2+a^2}\right) \right|} +a^2C_0 \right\} \;\cdots\; \tan{\left(\theta\right)}\frac{1}{\cos{\left(\theta\right)}}=\frac{1}{a^2}x\sqrt{x^2+a^2}, \tan{\left(\theta\right)}+\frac{1}{\cos{\left(\theta\right)}}=\frac{1}{a}\left(x+\sqrt{x^2+a^2}\right) \\&=&\frac{1}{2}\left[ x\sqrt{x^2+a^2} +a^2\left\{ \ln{\left|x+\sqrt{x^2+a^2}\right|} -\ln{\left|a\right|} \right\} +a^2C_0 \right] \;\cdots\;\ln{\frac{A}{B}}=\ln{A}-\ln{B} \\&=&\frac{1}{2}\left\{ x\sqrt{x^2+a^2} +a^2\ln{\left|x+\sqrt{x^2+a^2}\right|} -a^2\ln{\left|a\right|} +a^2C_0 \right\} \\&=&\frac{1}{2}\left\{ x\sqrt{x^2+a^2} +a^2\ln{\left|x+\sqrt{x^2+a^2}\right|} \right\} -\frac{a^2}{2}\ln{\left|a\right|} +\frac{a^2}{2}C_0 \\&=&\frac{1}{2}\left\{ x\sqrt{x^2+a^2} +a^2\ln{\left|x+\sqrt{x^2+a^2}\right|} \right\} +C\;\cdots\;C=-\frac{a^2}{2}\ln{\left|a\right|}+\frac{a^2}{2}C_0\;(C:積分定数) \end{eqnarray} $$
$$ \begin{eqnarray} \tan{\left(\theta\right)}\frac{1}{\cos{\left(\theta\right)}} &=&\tan{\left(\theta\right)}\sqrt{\frac{1}{\cos^2{\left(\theta\right)}}} \\&=&\tan{\left(\theta\right)}\sqrt{\tan^2{\left(\theta\right)}+1} \;\cdots\; \frac{1}{\cos^2{\left(\theta\right)}} =\frac{\sin^2{\left(\theta\right)}+\cos^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} =\frac{\sin^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}}+1 =\tan^2{\left(\theta\right)}+1 \\&=&\frac{x}{a}\sqrt{\left(\frac{x}{a}\right)^2+1} \;\cdots\;x=a\tan{\left(\theta\right)}より\tan{\left(\theta\right)}=\frac{x}{a} \\&=&\frac{x}{a}\sqrt{\frac{x^2+a^2}{a^2}} \\&=&\frac{x}{a}\sqrt{\frac{1}{a^2}\left(x^2+a^2\right)} \\&=&\frac{x}{a}\frac{1}{a}\sqrt{x^2+a^2} \\&=&\frac{1}{a^2}x\sqrt{x^2+a^2} \end{eqnarray} $$
$$ \begin{eqnarray} \tan{\left(\theta\right)}+\frac{1}{\cos{\left(\theta\right)}} &=&\tan{\left(\theta\right)}+\sqrt{\frac{1}{\cos^2{\left(\theta\right)}}} \\&=&\tan{\left(\theta\right)}+\sqrt{\tan^2{\left(\theta\right)}+1} \;\cdots\; \frac{1}{\cos^2{\left(\theta\right)}} =\frac{\sin^2{\left(\theta\right)}+\cos^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} =\frac{\sin^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}}+1 =\tan^2{\left(\theta\right)}+1 \\&=&\frac{x}{a}+\sqrt{\left(\frac{x}{a}\right)^2+1} \;\cdots\;x=a\tan{\left(\theta\right)}より\tan{\left(\theta\right)}=\frac{x}{a} \\&=&\frac{x}{a}+\sqrt{\frac{x^2+a^2}{a^2}} \\&=&\frac{x}{a}+\sqrt{\frac{1}{a^2}\left(x^2+a^2\right)} \\&=&\frac{x}{a}+\frac{1}{a}\sqrt{x^2+a^2} \\&=&\frac{1}{a}\left(x+\sqrt{x^2+a^2}\right) \end{eqnarray} $$

0 件のコメント:

コメントを投稿