四元数の行列表現での逆元
$$
\begin{eqnarray}
\mathbf{q}=w+xi+yj+zk
&\leftrightarrow&
\href{https://shikitenkai.blogspot.com/2020/06/blog-post_99.html}{
\begin{bmatrix}
w+xi&y+zi\\
-(y-zi)&w-xi\\
\end{bmatrix}
}
\end{eqnarray}
$$
$$
\begin{eqnarray}
|\mathbf{q}|^2=|w+xi+yj+zk|^2
&\leftrightarrow&
\begin{vmatrix}
w+xi&y+zi\\
-(y-zi)&w-xi\\
\end{vmatrix}
\\&=&(w+xi)(w-xi)-(y+zi)(-(y-zi))
\\&=&(w+xi)(w-xi)+(y+zi)(y-zi)
\\&=&w^2+x^2+y^2+z^2
\end{eqnarray}
$$
$$
\begin{eqnarray}
\bar{\mathbf{q}}=w-xi-yj-zk
&\leftrightarrow&
\begin{bmatrix}
w+(-x)i&(-y)+(-z)i\\
-((-y)-(-z)i)&w-(-x)i\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
w-xi&-y-zi\\
-(-y+zi)&w+xi\\
\end{bmatrix}
\end{eqnarray}
$$
$$
\begin{eqnarray}
\mathbf{q}\bar{\mathbf{q}}
&=&(w+xi+yj+zk)(w-xi-yj-zk)
\\&\leftrightarrow&
\begin{bmatrix}
w+xi&y+zi\\
-(y-zi)&w-xi\\
\end{bmatrix}
\begin{bmatrix}
w-xi&-y-zi\\
-(-y+zi)&w+xi\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
(w+xi)(w-xi)+(y+zi)(-(-y+zi))
&(w+xi)(-y-zi)+(y+zi)(w+xi)\\
(-(y-zi))(w-xi)+(w-xi)(-(-y+zi))
&(-(y-zi))(-y-zi)+(w-xi)(w+xi)\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
(w+xi)(w-xi)+(y+zi)(y-zi)
&(w+xi)(-y-zi)+(y+zi)(w+xi)\\
(-y+zi)(w-xi)+(w-xi)(y-zi)
&(-y+zi)(-y-zi)+(w-xi)(w+xi)\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
w^2-wxi+wxi+x^2 +y^2-yzi+yzi+z^2
&-wy-wzi-xyi+xz +wy+xyi+wzi-xz\\
-wy+xyi+wzi+xz +wy-wzi-xyi-xz
&y^2+yzi-yzi+z^2 +w^2+wxi-wxi+x^2\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
w^2+x^2+y^2+z^2
&0\\
0
&w^2+x^2+y^2+z^2\\
\end{bmatrix}
\end{eqnarray}
$$
$$
\begin{eqnarray}
\bar{\mathbf{q}}\mathbf{q}
&=&(w-xi-yj-zk)(w+xi+yj+zk)
\\&\leftrightarrow&
\begin{bmatrix}
w-xi&-y-zi\\
-(-y+zi)&w+xi\\
\end{bmatrix}
\begin{bmatrix}
w+xi&y+zi\\
-(y-zi)&w-xi\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
(w-xi) (w+xi) +(-y-zi) (-(y-zi))
& (w-xi) (y+zi) +(-y-zi) (w-xi)\\
(-(-y+zi)) (w+xi) +(w+xi) (-(y-zi))
& (-(-y+zi)) (y+zi) +(w+xi) (w-xi)\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
(w-xi) (w+xi) +(-y-zi) (-y+zi)
& (w-xi) (y+zi) +(-y-zi) (w-xi)\\
(y-zi) (w+xi) +(w+xi) (-y+zi)
& (y-zi) (y+zi) +(w+xi) (w-xi)\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
w^2 +wxi -wxi +x^2 +y^2 +yzi -yzi +z^2
&wy +wzi -xyi +xz -wy +xyi -wzi -xz\\
wy +xyi -wzi +xz -wy +wzi -xyi -xz
&y^2 +yzi -yzi +z^2 +w^2 -wxi +wxi +x^2\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
w^2+x^2+y^2+z^2
&0\\
0
&w^2+x^2+y^2+z^2\\
\end{bmatrix}
\;\cdots\;行列の積は一般に非可換だが,この形の行列では可換である
\end{eqnarray}
$$
$$
\begin{eqnarray}
\frac{\mathbf{q}\bar{\mathbf{q}}}{|\mathbf{q}|^2}
&=&\frac{\bar{\mathbf{q}}\mathbf{q}}{|\mathbf{q}|^2}
=\mathbf{q}\frac{\bar{\mathbf{q}}}{|\mathbf{q}|^2}
=\frac{\bar{\mathbf{q}}}{|\mathbf{q}|^2}\mathbf{q}
=\frac{1}{|\mathbf{q}|^2}\mathbf{q}\bar{\mathbf{q}}
=\frac{1}{|\mathbf{q}|^2}\bar{\mathbf{q}}\mathbf{q}
\\&\leftrightarrow&
\frac{1}{w^2+x^2+y^2+z^2}
\begin{bmatrix}
w^2+x^2+y^2+z^2
&0\\
0
&w^2+x^2+y^2+z^2\\
\end{bmatrix}
\\&=&
\begin{bmatrix}
1&0\\
0&1\\
\end{bmatrix}
\\&=&\mathbf{E}
\end{eqnarray}
$$
$$
\begin{eqnarray}
\mathbf{q}^{-1}
&=&\frac{\bar{\mathbf{q}}}{|\mathbf{q}|^2}
\\&\leftrightarrow&
\frac{1}{w^2+x^2+y^2+z^2}
\begin{bmatrix}
w-xi&-y-zi\\
-(-y+zi)&w+xi\\
\end{bmatrix}
\end{eqnarray}
$$
0 件のコメント:
コメントを投稿