n回の事象が発生するまでの間隔の確率密度分布 (ガンマ分布)
\(n\)回の事象が発生するまでの間隔(時間)の確率\(Y_n\)について考える.
$$
\begin{eqnarray}
F_n(t)
&=&P(Y_n\leq t)
\;\cdots\;F_nをY_nの累積分布凾数(cumulative\;distribution\;function, CDF)とする.(少なくともtまでにn回の事象が発生している)\\
&=&P(X_t\geq n)
\;\cdots\;n回以上の事象が発生するのが時刻t以降になる確率とも言える\\
&=&\sum_{x=n}^\infty P_o(x;\lambda t)
\;\cdots\;事象の発生回数の確率を\lambda tをパラメータとするポアソン分布とする.ポアソン分布: P_o(x;\lambda)= \mathrm{e}^{-\lambda} \frac{\left(\lambda\right)^x}{x!}\\
&=&\sum_{x=n}^\infty\mathrm{e}^{-\lambda t} \frac{\left(\lambda t\right)^x}{x!}\;\cdots\;ポアソン分布は期間内で何回起こるか?の確率分布(指数分布は次の発生までの期間の確率分布)\\
&=&1-\sum_{x=0}^{n-1}\mathrm{e}^{-\lambda t} \frac{\left(\lambda t\right)^x}{x!}
\;\cdots\;時刻tまでにn回未満の事象しか発生しない場合の余事象\\
&=&1-\mathrm{e}^{-\lambda t}\left\{
\frac{\left(\lambda t\right)^0}{0!}
+ \frac{\left(\lambda t\right)^1}{1!}
+ \frac{\left(\lambda t\right)^2}{2!}
+ \dots
+ \frac{\left(\lambda t\right)^\left(n-2\right)}{\left(n-2\right)!}
+ \frac{\left(\lambda t\right)^\left(n-1\right)}{\left(n-1\right)!}
\right\}\\
&=&1-\mathrm{e}^{-\lambda t}A
\;\cdots\;A=\left\{
\frac{\left(\lambda t\right)^0}{0!}
+ \frac{\left(\lambda t\right)^1}{1!}
+ \frac{\left(\lambda t\right)^2}{2!}
+ \dots
+ \frac{\left(\lambda t\right)^\left(n-2\right)}{\left(n-2\right)!}
+ \frac{\left(\lambda t\right)^\left(n-1\right)}{\left(n-1\right)!}
\right\}\\
Y_n=\frac{\partial F_n(t)}{\partial t}
&=&0-\left[(\mathrm{e}^{-\lambda t})'A
+\mathrm{e}^{-\lambda t}(A)'
\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/02/blog-post.html}{(fg)'=f'g+fg'}
\;\cdots\;累積分布凾数の微分は確率密度凾数(probability\;density\;function、PDF)\\
(\mathrm{e}^{-\lambda t})'A
&=&\mathrm{e}^{-\lambda t}(-\lambda)A\\
&=&\mathrm{e}^{-\lambda t}(-\lambda)\left\{
\frac{\left(\lambda t\right)^0}{0!}
+ \frac{\left(\lambda t\right)^1}{1!}
+ \frac{\left(\lambda t\right)^2}{2!}
+ \dots
+ \frac{\left(\lambda t\right)^\left(n-2\right)}{\left(n-2\right)!}
+ \frac{\left(\lambda t\right)^\left(n-1\right)}{\left(n-1\right)!}
\right\}\\
&=&\mathrm{e}^{-\lambda t}\left\{
- \frac{\lambda}{0!}
- \frac{\lambda^2 t}{1!}
- \frac{\lambda^3 t^2}{2!}
- \dots
- \frac{\lambda^\left(n-1\right) t^\left(n-2\right)}{\left(n-2\right)!}
- \frac{\lambda^n t^\left(n-1\right)}{\left(n-1\right)!}
\right\}\\
\\
\mathrm{e}^{-\lambda t}(A)'
&=&\mathrm{e}^{-\lambda t}\left(\left\{
\frac{\left(\lambda t\right)^0}{0!}
+ \frac{\left(\lambda t\right)^1}{1!}
+ \frac{\left(\lambda t\right)^2}{2!}
+ \dots
+ \frac{\left(\lambda t\right)^\left(n-2\right)}{\left(n-2\right)!}
+ \frac{\left(\lambda t\right)^\left(n-1\right)}{\left(n-1\right)!}
\right\}\right)'\\
&=&\mathrm{e}^{-\lambda t}\left\{
\left(\frac{1}{0!}\right)'
+ \left(\frac{\lambda t}{1!}\right)'
+ \left(\frac{\lambda^2 t^2}{2!}\right)'
+ \dots
+ \left(\frac{\lambda^\left(n-2\right) t^\left(n-2\right)}{\left(n-2\right)!}\right)'
+ \left(\frac{\lambda^\left(n-1\right) t^\left(n-1\right)}{\left(n-1\right)!}\right)'
\right\}\\
&=&\mathrm{e}^{-\lambda t}\left\{
0
+ \frac{\lambda}{1!}
+ \frac{2\lambda^2 t}{2!}
+ \dots
+ \frac{(n-2)\lambda^{(n-2)} t^\left(n-3\right)}{\left(n-2\right)!}
+ \frac{(n-1)\lambda^{(n-1)} t^\left(n-2\right)}{\left(n-1\right)!}
\right\}\\
&=&\mathrm{e}^{-\lambda t}\left\{
\frac{\lambda}{1!}
+ \frac{\lambda^2 t}{1!}
+ \dots
+ \frac{\lambda^{(n-2)} t^\left(n-3\right)}{\left(n-3\right)!}
+ \frac{\lambda^{(n-1)} t^\left(n-2\right)}{\left(n-2\right)!}
\right\}
\;\cdots\;\frac{n}{n!}=\frac{n}{n\times(n-1)\times\dots\times 1}=\frac{1}{(n-1)\times\dots\times 1}=\frac{1}{(n-1)!}\\
(\mathrm{e}^{-\lambda t})'A+\mathrm{e}^{-\lambda t}(A)'
&=&\mathrm{e}^{-\lambda t}\left\{
- \frac{\lambda^1}{0!}
- \frac{\lambda^2 t}{1!}
- \frac{\lambda^3 t^2}{2!}
- \dots
- \frac{\lambda^\left(n-1\right) t^\left(n-2\right)}{\left(n-2\right)!}
- \frac{\lambda^n t^\left(n-1\right)}{\left(n-1\right)!}
\right\}
+ \mathrm{e}^{-\lambda t}\left\{
\frac{\lambda}{1!}
+ \frac{\lambda^2 t}{1!}
+ \dots
+ \frac{\lambda^{(n-2)} t^\left(n-3\right)}{\left(n-3\right)!}
+ \frac{\lambda^{(n-1)} t^\left(n-2\right)}{\left(n-2\right)!}
\right\}\\
&=&\mathrm{e}^{-\lambda t}\left\{
\left(- \frac{\lambda}{0!}+ \frac{\lambda}{1!}\right)
+ \left(- \frac{\lambda^2 t}{1!}+ \frac{\lambda^2 t}{1!}\right)
+ \dots
+ \left(- \frac{\lambda^\left(n-1\right) t^\left(n-2\right)}{\left(n-2\right)!}+ \frac{\lambda^{(n-1)} t^\left(n-2\right)}{\left(n-2\right)!}\right)
- \frac{\lambda^n t^\left(n-1\right)}{\left(n-1\right)!}
\right\}\\
&=&\mathrm{e}^{-\lambda t}\left\{
- \frac{\lambda^n t^\left(n-1\right)}{\left(n-1\right)!}
\right\}\\
Y_n=\frac{\partial F_n(t)}{\partial t}
&=&-\left[(\mathrm{e}^{-\lambda t})'A
+\mathrm{e}^{-\lambda t}(A)'
\right]\\
&=&-\left[\mathrm{e}^{-\lambda t}\left\{
- \frac{\lambda^n t^\left(n-1\right)}{\left(n-1\right)!}
\right\}\right]\\
&=&\mathrm{e}^{-\lambda t}\frac{\lambda^n t^\left(n-1\right)}{\left(n-1\right)!}\\
&=&\mathrm{e}^{-\beta t}\frac{\beta^\alpha t^\left(\alpha-1\right)}{\left(\alpha-1\right)!}
\;\cdots\;\alpha=n, \beta=\lambdaとする.\\
&=&\frac{\mathrm{e}^{-\beta t}}{\left(\alpha-1\right)!}\beta^\alpha t^\left(\alpha-1\right)\\
&=&\frac{\mathrm{e}^{-\beta t}}{\Gamma(\alpha)}\beta^\alpha t^\left(\alpha-1\right)
\;\cdots\;ガンマ分布, \Gamma(n)=(n-1)!\\
\end{eqnarray}
$$
\(\alpha=1\)の時,指数分布となる(事象と事象の間隔の確率分布).
$$
\begin{eqnarray}
\frac{\mathrm{e}^{-\beta t}}{\Gamma(\alpha)}\beta^\alpha t^\left(\alpha-1\right)
&=&\frac{\mathrm{e}^{-\beta t}}{\Gamma(1)}\beta^1 t^\left(1-1\right)\;\cdots\;\alpha=1\\
&=&\frac{\mathrm{e}^{-\beta t}}{1}\beta t^\left(0\right)\;\cdots\;\Gamma(n)=(n-1)!,\Gamma(1)=(1-1)!=0!=1\\
&=&\mathrm{e}^{-\beta t}\beta\;\cdots\;t^0=1\\
&=&\href{https://shikitenkai.blogspot.com/2020/05/blog-post_0.html}{\lambda\mathrm{e}^{-\lambda t}}\;\cdots\;\beta=\lambda\\
\end{eqnarray}
$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿