残差平方和とデータの各平方和
$$\begin{eqnarray}
S_e&=&\sum_{i=1}^n e_i^2\\
&=&\sum_{i=1}^n \left(y_i - \hat{y_i}\right)^2\;\dots\;\hat{y_i}=\hat{\alpha}+\hat{\beta} x_i\\
&=&\left(\sum_{i=1}^n y_i^2\right)
- 2n\bar{y}\hat{\alpha}
- 2\left(\sum_{i=1}^n x_i y_i\right)\hat{\beta}
+ n\hat{\alpha}^2
+ 2n\bar{x}\hat{\alpha}\hat{\beta}
+ \left(\sum_{i=1}^n x_i^2\right)\hat{\beta}^2
\;\dots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{残差平方和の展開した式}\\
&=&\left(\sum_{i=1}^n y_i^2\right)
- 2n\bar{y}\left(\bar{y}-\frac{S_{xy}}{S_{xx}}\bar{x}\right)
- 2\left(\sum_{i=1}^n x_i y_i\right)\frac{S_{xy}}{S_{xx}}
+ n\left(\bar{y}-\frac{S_{xy}}{S_{xx}}\bar{x}\right)^2
+ 2n\bar{x}\left(\bar{y}-\frac{S_{xy}}{S_{xx}}\bar{x}\right)\frac{S_{xy}}{S_{xx}}
+ \left(\sum_{i=1}^n x_i^2\right)\left(\frac{S_{xy}}{S_{xx}}\right)^2
\;\dots\; \hat{\alpha}=\bar{y}-\frac{S_{xy}}{S_{xx}}\bar{x},\;\hat{\beta}=\frac{S_{xy}}{S_{xx}}\\
&=&\left(\sum_{i=1}^n y_i^2\right)
- 2n\bar{y}^2
+ 2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
- 2\frac{S_{xy}}{S_{xx}}\left(\sum_{i=1}^n x_i y_i\right)
+ n\bar{y}^2
- 2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
+ n\left(\frac{S_{xy}}{S_{xx}}\right)^2\bar{x}^2
+ 2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
- 2n\left(\frac{S_{xy}}{S_{xx}}\right)^2\bar{x}^2
+ \left(\sum_{i=1}^n x_i^2\right)\left(\frac{S_{xy}}{S_{xx}}\right)^2\\
&=&\left\{
\left(\sum_{i=1}^n y_i^2\right)
- 2n\bar{y}^2
+ n\bar{y}^2
\right\}
+\left\{
2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
- 2\frac{S_{xy}}{S_{xx}}\left(\sum_{i=1}^n x_i y_i\right)
- 2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
+ 2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
\right\}
+\left\{
n\left(\frac{S_{xy}}{S_{xx}}\right)^2\bar{x}^2
- 2n\left(\frac{S_{xy}}{S_{xx}}\right)^2\bar{x}^2
+ \left(\sum_{i=1}^n x_i^2\right)\left(\frac{S_{xy}}{S_{xx}}\right)^2
\right\}\\
&=&\left\{
\left(\sum_{i=1}^n y_i^2\right)
- n\bar{y}^2
\right\}
+\left\{
2n\frac{S_{xy}}{S_{xx}}\bar{x}\bar{y}
- 2\frac{S_{xy}}{S_{xx}}\left(\sum_{i=1}^n x_i y_i\right)
\right\}
+\left\{
- n\left(\frac{S_{xy}}{S_{xx}}\right)^2\bar{x}^2
+ \left(\sum_{i=1}^n x_i^2\right)\left(\frac{S_{xy}}{S_{xx}}\right)^2
\right\}\\
&=&\left\{
\left(\sum_{i=1}^n y_i^2\right)
- n\bar{y}^2
\right\}
-2\frac{S_{xy}}{S_{xx}}\left\{
\left(\sum_{i=1}^n x_i y_i\right)
- n\bar{x}\bar{y}
\right\}
+\left(\frac{S_{xy}}{S_{xx}}\right)^2\left\{
\left(\sum_{i=1}^n x_i^2\right)
- n\bar{x}^2
\right\}
\;\dots\;\sum_{i=1}^n y_i^2-n\bar{y}^2=S_{yy},\;\sum_{i=1}^n x_i^2-n\bar{x}^2=S_{xx},\;\sum_{i=1}^n x_i y_i-n\bar{x}\bar{y}=S_{xy}\\
&=&S_{yy}
-2\frac{S_{xy}}{S_{xx}}S_{xy}
+\left(\frac{S_{xy}}{S_{xx}}\right)^2S_{xx}\\
&=&S_{yy}
-2\frac{S_{xy}^2}{S_{xx}}
+\frac{S_{xy}^2}{S_{xx}}\\
&=&S_{yy}
-\frac{S_{xy}^2}{S_{xx}}\\
\end{eqnarray}$$
よって,残差平方和\(S_{e}\)はデータの各平方和(\(S_{xx}, S_{yy}, S_{xy}\))より求めることができる.
0 件のコメント:
コメントを投稿