例:確率Pで発生しているデータ系列を確率Qに基づく符号化した際のKullback-Leiblerダイバージェンス\(D_n\)
\(y_1\) |
\(y_2\) |
\(x^2\) \(=y_1y_2\) |
\(P(x^2)\) |
\(Q(x^2)\) |
\(Q'(x^2)\) |
\(Q''(x^2)\) |
0 |
0 |
00 |
\(\frac{1}{8}\) |
\(\frac{1}{8}\) |
\(\frac{1}{2}\) |
\(\frac{1}{4}\) |
0 |
1 |
01 |
\(\frac{1}{8}\) |
\(\frac{1}{8}\) |
\(\frac{1}{4}\) |
\(\frac{1}{4}\) |
1 |
0 |
10 |
\(\frac{1}{4}\) |
\(\frac{1}{4}\) |
\(\frac{1}{8}\) |
\(\frac{1}{4}\) |
1 |
1 |
11 |
\(\frac{1}{2}\) |
\(\frac{1}{2}\) |
\(\frac{1}{8}\) |
\(\frac{1}{4}\) |
\(Q(x^2)\)でのダイバージェンス
$$\begin{array}{rcl}
D_n(P\parallel Q)&=&E^{n}_{P}\left[\log_2{\frac{P(X^n)}{Q(X^n)}}\right]\\
&=&\displaystyle \sum_{x^2\in\chi^2} P(x^2)\log_2{\frac{P(x^2)}{Q(x^2)}}\\
&=&\frac{1}{8} \times \log_2{\frac{\frac{1}{8}}{\frac{1}{8}}}
+\frac{1}{8} \times \log_2{\frac{\frac{1}{8}}{\frac{1}{8}}}
+\frac{1}{4} \times \log_2{\frac{\frac{1}{4}}{\frac{1}{4}}}
+\frac{1}{2} \times \log_2{\frac{\frac{1}{2}}{\frac{1}{2}}}\\
&=&\frac{1}{8} \times \log_2{1}
+\frac{1}{8} \times \log_2{1}
+\frac{1}{4} \times \log_2{1}
+\frac{1}{2} \times \log_2{1}\\
&=&\frac{1}{8} \times 0
+\frac{1}{8} \times 0
+\frac{1}{4} \times 0
+\frac{1}{2} \times 0\\
&=&0+0+0+0\\
&=&0
\end{array}$$
\(Q'(x^2)\)でのダイバージェンス
$$\begin{array}{rcl}
D_n(P\parallel Q')&=&E^{n}_{P}\left[\log_2{\frac{P(X^n)}{Q'(X^n)}}\right]\\
&=&\displaystyle \sum_{x^2\in\chi^2} P(x^2)\log_2{\frac{P(x^2)}{Q'(x^2)}}\\
&=&\frac{1}{8} \times \log_2{\frac{\frac{1}{8}}{\frac{1}{2}}}
+\frac{1}{8} \times \log_2{\frac{\frac{1}{8}}{\frac{1}{4}}}
+\frac{1}{4} \times \log_2{\frac{\frac{1}{4}}{\frac{1}{8}}}
+\frac{1}{2} \times \log_2{\frac{\frac{1}{2}}{\frac{1}{8}}}
\\
&=&\frac{1}{8} \times \log_2{\frac{1}{4}}
+\frac{1}{8} \times \log_2{\frac{1}{2}}
+\frac{1}{4} \times \log_2{2}
+\frac{1}{2} \times \log_2{4}
\\
&=&\frac{1}{8} \times -2
+\frac{1}{8} \times -1
+\frac{1}{4} \times 1
+\frac{1}{2} \times 2
\\
&=&-\frac{1}{4}-\frac{1}{8}+\frac{1}{4}+1\\
&=&\frac{7}{8}=0.875
\end{array}$$
\(Q''(x^2)\)でのダイバージェンス
$$\begin{array}{rcl}
D_n(P\parallel Q'')&=&E^{n}_{P}\left[\log_2{\frac{P(X^n)}{Q''(X^n)}}\right]\\
&=&\displaystyle \sum_{x^2\in\chi^2} P(x^2)\log_2{\frac{P(x^2)}{Q''(x^2)}}\\
&=&\frac{1}{8} \times \log_2{\frac{\frac{1}{8}}{\frac{1}{4}}}
+\frac{1}{8} \times \log_2{\frac{\frac{1}{8}}{\frac{1}{4}}}
+\frac{1}{4} \times \log_2{\frac{\frac{1}{4}}{\frac{1}{4}}}
+\frac{1}{2} \times \log_2{\frac{\frac{1}{2}}{\frac{1}{4}}}
\\
&=&\frac{1}{8} \times \log_2{\frac{1}{2}}
+\frac{1}{8} \times \log_2{\frac{1}{2}}
+\frac{1}{4} \times \log_2{1}
+\frac{1}{2} \times \log_2{2}
\\
&=&\frac{1}{8} \times -1
+\frac{1}{8} \times -1
+\frac{1}{4} \times 0
+\frac{1}{2} \times 1
\\
&=&-\frac{1}{8}-\frac{1}{8}+0+\frac{1}{2}\\
&=&\frac{1}{4}=0.25
\end{array}$$
0 件のコメント:
コメントを投稿