\(\log_{\mathrm{e}}{x}\leq(x-1)\)の証明
$$\begin{array}{rcl}
f(x)&=&x-1-\log_{\mathrm{e}}{x}\\
f'(x)&=&\frac{x-1}{x}\\
f''(x)&=&\frac{1}{x^2}\\
f'=0&は&x=1\\
\end{array}$$
よって\(f''(1)\gt0\)より\(f\)は\(x=1\)で極小であり,また \(x\lt1\) で常に\(f'\lt0\) 及び \(x\gt1\) で常に\(f'\gt0\) なので最小でもある.
\(f(1)=0\)なので\(f\geq0\)である.
$$\begin{array}{rcl}
x-1-\log_{\mathrm{e}}{x}&\geq&0\\
-\log_{\mathrm{e}}{x}&\geq&-x+1=-(x-1)\\
\log_{\mathrm{e}}{x}&\leq&(x-1)\\
\end{array}$$
\(\log_{\mathrm{e}}{x}\leq(x-1)\)の底の変換等の式変形
$$\begin{array}{rcl}
\log_{\mathrm{e}}{x}&\leq&(x-1)\\
&\leq&-(1-x)\\
-\log_{\mathrm{e}}{x}&\geq&(1-x)\\
\log_{\mathrm{e}}{\frac{1}{x}}&\geq&(1-x)\\
\frac{\log_2{\frac{1}{x}}}{\log_2{\mathrm{e}}}&\geq&(1-x)\\
\log_2{\frac{1}{x}}&\geq&(\log_2{\mathrm{e}})(1-x)\\
\end{array}$$
\(D_n(P\parallel Q)\)の下限
$$\begin{array}{rcl}
\log_2{\frac{1}{x}}&\geq&(\log_2{\mathrm{e}})(1-x)\\
\log_2{\frac{1}{\frac{Q(x^n)}{P(x^n)}}}&\geq&(\log_2{\mathrm{e}})\left\{1-\frac{Q(x^n)}{P(x^n)}\right\}&x=\frac{Q(x^n)}{P(x^n)}として代入\\
\log_2{\frac{P(x^n)}{Q(x^n)}}&\geq&(\log_2{\mathrm{e}})\left\{1-\frac{Q(x^n)}{P(x^n)}\right\}\\
E^{n}_{P}\left[\log_2{\frac{P(X^n)}{Q(X^n)}}\right]&\geq&E^{n}_{P}\left[(\log_2{\mathrm{e}})\left\{1-\frac{Q(X^n)}{P(X^n)}\right\}\right]&両辺期待値を取る\\
D_n(P\parallel Q)&\geq&E^{n}_{P}\left[(\log_2{\mathrm{e}})\left\{1-\frac{Q(X^n)}{P(X^n)}\right\}\right]\\
&\geq&(\log_2{\mathrm{e}})E^{n}_{P}\left[1-\frac{Q(X^n)}{P(X^n)}\right]&E[cX]=cE[X]\\
&\geq&\displaystyle (\log_2{\mathrm{e}})\left[\left\{1-\frac{Q(x^m)}{P(x^m)}\right\}P(x^m)+\left\{1-\frac{Q(x^n_2)}{P(x^n_2)}\right\}P(x^n_2)+\dotsb\right]\\
&\geq&\displaystyle (\log_2{\mathrm{e}})\left[\left\{P(x^m)-Q(x^m)\right\}+\left\{P(x^n_2)-Q(x^n_2)\right\}+\dotsb\right]\\
&\geq&\displaystyle (\log_2{\mathrm{e}})\left[\left\{P(x^m)+P(x^n_2)+\dotsb\right\}-\left\{Q(x^m)+Q(x^n_2)+\dotsb\right\}\right]\\
&\geq&\displaystyle (\log_2{\mathrm{e}})\left\{\sum_{X^n}P(x^n)-\sum_{X^n}Q(x^n)\right\}\\
&\geq&\displaystyle (\log_2{\mathrm{e}})\left\{1-\sum_{X^n}Q(x^n)\right\}&\displaystyle \sum_{X^n}P(x^n)=1\\
&\geq&0&\displaystyle \sum_{X^n}Q(x^n)=1のときは0\\
\end{array}$$
0 件のコメント:
コメントを投稿