ド・モアブルの定理
$$\displaystyle (\cos\theta+i\sin\theta)^n=\cos(n\theta)+i\sin(n\theta)$$
3倍角の公式(Triple-angle formulae)
$$\begin{array}{rcl}
\displaystyle (\cos\theta+i\sin\theta)^3
&=& \displaystyle \cos^3\theta+3\cos^2\theta(i\sin\theta)+3\cos\theta(i\sin\theta)^2+(i\sin\theta)^3\\
&=& \displaystyle \cos^3\theta+i3\cos^2\theta\sin\theta-3\cos\theta\sin^2\theta-i\sin^3\theta\\
&=& \displaystyle \left(\cos^3\theta-3\cos\theta\sin^2\theta\right)+i\left(3\cos^2\theta\sin\theta-\sin^3\theta\right)\\
&=& \displaystyle \cos(3\theta)+i\sin(3\theta)\,\dotso\,これがド・モアブルの定理の結果と等しい.
\end{array}$$
$$\begin{array}{rcl}
\displaystyle \cos(3\theta)&=& \cos^3\theta-3\cos\theta\sin^2\theta\\
&=& \cos^3\theta-3\cos\theta(1-\cos^2\theta)\\
&=& \cos^3\theta-3\cos\theta+3\cos^3\theta\\
&=& 4\cos^3\theta-3\cos\theta\\
\displaystyle \sin(3\theta)&=& 3\cos^2\theta\sin\theta-\sin^3\theta\\
&=& 3\sin\theta(1-\sin^2\theta)-\sin^3\theta\\
&=& 3\sin\theta-3\sin^3\theta-\sin^3\theta\\
&=& 3\sin\theta-4\sin^3\theta\\
\end{array}$$
4倍角の場合
$$\begin{array}{rcl}
\displaystyle (\cos\theta+i\sin\theta)^4
&=& \displaystyle \cos^4\theta+4\cos^3\theta(i\sin\theta)+6\cos^2\theta(i\sin\theta)^2+4\cos\theta(i\sin\theta)^3+(i\sin\theta)^4\\
&=& \displaystyle \cos^4\theta+i4\cos^3\theta\sin\theta-6\cos^2\theta\sin^2\theta-i4\cos\theta\sin^3\theta+\sin^4\theta\\
&=& \displaystyle \left(\cos^4\theta-6\cos^2\theta\sin^2\theta+\sin^4\theta\right)+i\left(4\cos^3\theta\sin\theta-4\cos\theta\sin^3\theta\right)\\
&=& \displaystyle \cos(4\theta)+i\sin(4\theta)\,\dotso\,これがド・モアブルの定理の結果と等しい.
\end{array}$$
$$\begin{array}{rcl}
\displaystyle \cos(4\theta)&=&\cos^4\theta-6\cos^2\theta\sin^2\theta+\sin^4\theta\\
&=&\cos^4\theta-6\cos^2\theta(1-\cos^2\theta)+(1-\cos^2\theta)^2\\
&=&\cos^4\theta-6\cos^2\theta+6\cos^4\theta+1-2\cos^2\theta+\cos^4\theta\\
&=&\cos^4\theta+6\cos^4\theta+\cos^4\theta-6\cos^2\theta-2\cos^2\theta+1\\
&=&8\cos^4\theta-8\cos^2\theta+1\\
\displaystyle \sin(4\theta)&=&4\cos^3\theta\sin\theta-4\cos\theta\sin^3\theta\\
&=&\cos\theta(4\cos^2\theta\sin\theta-4\sin^3\theta)\\
&=&\cos\theta(4\sin\theta(1-\sin^2\theta)-4\sin^3\theta)\\
&=&\cos\theta(4\sin\theta-4\sin^3\theta-4\sin^3\theta)\\
&=&\cos\theta(4\sin\theta-8\sin^2\theta)\\
\end{array}$$
0 件のコメント:
コメントを投稿