二項分布 \(B(n, p)\)
$$B(n, p) = f_X(x) =
\begin{cases}
\displaystyle _nC_x\,p^x(1-p)^{n-x} & \quad x \in \left\{0,1,2, \dotsc ,n\right\}\\
\displaystyle 0 & \quad x \notin \left\{0,1,2, \dotsc ,n\right\}
\end{cases}
$$
二項分布の分散
$$\begin{array}{rcl}
E[X(X-1)]&=&\displaystyle \sum_{x=0}^{n}\left(x\left(x-1\right)\right)\left( _nC_x\,p^x(1-p)^{n-x} \right)\\
&=& \displaystyle \sum_{x=0}^{n}\left(x\left(x-1\right)\right)\left(\left( \frac{n!}{x!(n-x)!}\right)p^x(1-p)^{n-x}\right)\\
&=& \displaystyle \sum_{x=0}^{n} \frac{n!}{(x-2)!(n-x)!}p^x(1-p)^{n-x}\dotso \frac{x^2}{x!}=\frac{1}{(x-2)!}\\
&=& \displaystyle \sum_{x=0}^{n} \frac{n(n-1)(n-2)!}{(x-1)!(n-x)!}p^x(1-p)^{n-x}\dotso n!=n(n-1)(n-2)!\\
&=& \displaystyle \sum_{x=0}^{n} \frac{n(n-1)(n-2)!}{(x-1)!(n-x)!}p^2p^{x-2}(1-p)^{n-x}\dotso p^x=p^2p^{x-2}\\
&=& \displaystyle \sum_{x=0}^{n} \frac{n(n-1)(n-2)!}{(x-2)!(n-x))!}p^2 p^{x-2}(1-p)^{n-x}\\
&=& \displaystyle n(n-1)p^2\sum_{x=0}^{n} \frac{(n-2)!}{(x-2)!(n-2+2-x))!} p^{x-2}(1-p)^{n-2+2+x}\\
&=& \displaystyle n(n-1)p^2\sum_{x=0}^{n} \frac{(n-2)!}{(x-2)!(n-2-(x-2))!} p^{x-2}(1-p)^{n-2-(x-2)}\dotso 2-x=-(x-2)\\
&=& \displaystyle n(n-1)p^2 \sum_{x'=0}^{n-2} \frac{(n-2)!}{x'!(n-2-x')!}p^{x'}(1-p)^{n-2-x'}\dotso x'=x-2\\
&=& \displaystyle n(n-1)p^2\,1 \dotso B(n-2, p)の総和は1に等しい.\\
&=& \displaystyle n(n-1)p^2\\
V[X]&=&\displaystyle E[X^2]-E[X]^2\\
&=&\displaystyle E[X^2]-E[X]+E[X]-E[X]^2\\
&=&\displaystyle E[X^2-X]+E[X]-E[X]^2\dotso E[X] \pm E[Y]=E[X \pm Y]\\
&=&\displaystyle E[X(X-1)]+E[X]-E[X]^2\\
&=&\displaystyle n(n-1)p^2+np-(np)^2\\
&=&\displaystyle n^2p^2-np^2+np-n^2p^2\\
&=&\displaystyle -np^2+np\\
&=&\displaystyle np(-p+1)\\
&=&\displaystyle np(1-p)\\
&=& \sigma^2 \dotso 母集団の分散\\
\end{array}$$
0 件のコメント:
コメントを投稿