間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

lim x→π/2 cot(x) を求める

limxπ2cot(x)を求める

高階の微分を求めておく

準備としてcsc(x)の微分を求める. ddxcsc(x)=ddx1sin(x)=sin1(x)=sin2(x)(ddxsin(x))u=sin(x),f=u1,dfdx=dfdududx=u2dudx=sin2(x)(cos(x))=cos(x)sin2(x)=1sin(x)cos(x)sin(x)=csc(x)cot(x) 一階から順に求めておく. ddxcot(x)=ddxcos(x)sin(x)=(ddxcos(x))sin(x)cos(x)(ddxsin(x))sin2(x)(uv)=uvuvv2(uv)=(uv1)=u(v1)+(u)v1=u(v2v)+(u)v1vv1=v2(uvuv)=uvuvv2=(sin(x))sin(x)cos(x)(cos(x))sin2(x)=sin2(x)+cos2(x)sin2(x)=1sin2(x)=csc2(x)d2dx2cot(x)=ddx(csc2(x))=2csc(x)ddxcsc(x)u=csc(x),f=u2,dfdx=dfdududx=2ududx=2csc(x)(csc(x)cot(x))=2csc2(x)cot(x)ddxcsc2(x)=2csc2(x)cot(x)(使)d3dx3cot(x)=ddx(2csc2(x)cot(x))=2ddx(csc2(x)cot(x))=2{(ddxcsc2(x))cot(x)+csc2(x)(ddxcot(x))}(uv)=uv+uv=2{(2csc2(x)cot(x))cot(x)+csc2(x)(csc2(x))}ddxcsc2(x)=2csc2(x)cot(x),ddxcot(x)=csc2(x)=2(2csc2(x)cot2(x)+csc4(x))d4dx4cot(x)=ddx(2(2csc2(x)cot2(x)+csc4(x)))=2[ddx(2csc2(x)cot2(x)+csc4(x))]=2[ddx(2csc2(x)cot2(x))+ddx(csc4(x))](u+v)=u+v=2[2{(ddxcsc2(x))cot2(x)+csc2(x)(ddxcot2(x))}+4csc3(x)(csc(x)cot(x))](uv)=uv+uv,u=csc(x),f=u4,dfdx=dfdududx=4u3dudx,ddxcsc(x)=csc(x)cot(x)=2[2{(2csc2(x)cot(x))cot2(x)+csc2(x)(2cot(x)(csc2(x)))}4csc4(x)cot(x)]ddxcsc2(x)=2csc2(x)cot(x),u=cot(x),f=u2,dfdx=dfdududx=2ududx,ddxcot(x)=csc2(x)=2[2{2csc2(x)cot3(x)2csc4(x)cot(x)}4csc4(x)cot(x)]=2[4csc2(x)cot3(x)4csc4(x)cot(x)4csc4(x)cot(x)]=2[4csc2(x)cot3(x)8csc4(x)cot(x)]=8csc2(x)cot(x)(cot2(x)+2csc2(x))d5dx5cot(x)=ddx{8csc2(x)cot(x)(cot2(x)+2csc2(x))}=4ddx{2csc2(x)cot(x)(cot2(x)+2csc2(x))}=4{(ddx2csc2(x)cot(x))(cot2(x)+2csc2(x))+2csc2(x)cot(x)(ddx(cot2(x)+2csc2(x)))}=4[{2(2csc2(x)cot2(x)+csc4(x))}(cot2(x)+2csc2(x))+2csc2(x)cot(x)(ddxcot2(x)+2ddxcsc2(x))]=4[(4csc2(x)cot2(x)2csc4(x))(cot2(x)+2csc2(x))+2csc2(x)cot(x){(2csc2(x)cot(x))+2(2csc2(x)cot(x))}]=4{(4csc2(x)cot2(x)(cot2(x)+2csc2(x))2csc4(x)(cot2(x)+2csc2(x)))+2csc2(x)cot(x)2csc2(x)cot(x)+2csc2(x)cot(x)2(2csc2(x)cot(x))}=4(4csc2(x)cot4(x)8csc4(x)cot2(x)2csc4(x)cot2(x)4csc6(x)4csc4(x)cot2(x)8csc4(x)cot2(x))=4(4csc2(x)cot4(x)4csc6(x)22csc4(x)cot2(x))=8(2csc6(x)+2csc2(x)cot4(x)+11csc4(x)cot2(x))

x=π2でのテーラー展開を求めておく

cot(x)=10![d0dx0cot(x)|x=π2](xπ2)0+11![d1dx1cot(x)|x=π2](xπ2)1+12![d2dx2cot(x)|x=π2](xπ2)2+13![d3dx3cot(x)|x=π2](xπ2)3+14![d4dx4cot(x)|x=π2](xπ2)4+15![d5dx5cot(x)|x=π2](xπ2)5+=11[cot(π2)](xπ2)0+11[csc2(π2)](xπ2)1+12[2cot(π2)csc2(π2)](xπ2)2+16[2(2csc2(π2)cot2(π2)+csc4(π2))](xπ2)3+124[8csc2(π2)cot(π2)(cot2(π2)+2csc2(π2))](xπ2)4+1120[8(2csc6(π2)+2csc2(π2)cot4(π2)+11csc4(π2)cot2(π2))](xπ2)5+=[0]1+[112](xπ2)+12[2012](xπ2)2+16[2(21202+14)](xπ2)3+124[8120(02+212)](xπ2)4+1120[8(216+21204+111402)](xπ2)5+=(xπ2)26(xπ2)316120(xπ2)5+=(xπ2)13(xπ2)3215(xπ2)5+

limxπ2cot(x)を求める

limxπ2cot(x)=limxπ2[(xπ2)13(xπ2)3215(xπ2)5+]=0

0 件のコメント:

コメントを投稿