間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

sin(mx)sin(nx), cos(mx)cos(nx), sin(mx)cos(nx) の0から2πまでの積分

準備

準備の準備

$$\begin{eqnarray} \cos{\left(\alpha+\beta\right)}&=&\href{https://shikitenkai.blogspot.com/2019/06/blog-post.html}{ \cos{\left(\alpha\right)}\cos{\left(\beta\right)}-\sin{\left(\alpha\right)}\sin{\left(\beta\right)} } \\\cos{\left(\alpha-\beta\right)}&=&\cos{\left(\alpha\right)}\cos{\left(\beta\right)}+\sin{\left(\alpha\right)}\sin{\left(\beta\right)} \\\sin{\left(\alpha+\beta\right)}&=&\href{https://shikitenkai.blogspot.com/2019/06/blog-post.html}{ \sin{\left(\alpha\right)}\cos{\left(\beta\right)}+\cos{\left(\alpha\right)}\sin{\left(\beta\right)} } \\\sin{\left(\alpha-\beta\right)}&=&\sin{\left(\alpha\right)}\cos{\left(\beta\right)}-\cos{\left(\alpha\right)}\sin{\left(\beta\right)} \end{eqnarray}$$

準備1

$$\begin{eqnarray} \\\cos{\left(\alpha-\beta\right)}-\cos{\left(\alpha+\beta\right)}&=&\cos{\left(\alpha\right)}\cos{\left(\beta\right)}+\sin{\left(\alpha\right)}\sin{\left(\beta\right)} -\left\{\cos{\left(\alpha\right)}\cos{\left(\beta\right)}-\sin{\left(\alpha\right)}\sin{\left(\beta\right)}\right\} \;\cdots\;準備の準備 \\&=&\cancel{\cos{\left(\alpha\right)}\cos{\left(\beta\right)}}+\sin{\left(\alpha\right)}\sin{\left(\beta\right)} \cancel{-\cos{\left(\alpha\right)}\cos{\left(\beta\right)}}+\sin{\left(\alpha\right)}\sin{\left(\beta\right)} \\&=&2\sin{\left(\alpha\right)}\sin{\left(\beta\right)} \\\sin{\left(\alpha\right)}\sin{\left(\beta\right)}&=&\frac{\cos{\left(\alpha-\beta\right)}-\cos{\left(\alpha+\beta\right)}}{2} \end{eqnarray}$$

準備2

$$\begin{eqnarray} \\\cos{\left(\alpha-\beta\right)}+\cos{\left(\alpha+\beta\right)}&=&\cos{\left(\alpha\right)}\cos{\left(\beta\right)}+\sin{\left(\alpha\right)}\sin{\left(\beta\right)} +\left\{\cos{\left(\alpha\right)}\cos{\left(\beta\right)}-\sin{\left(\alpha\right)}\sin{\left(\beta\right)}\right\} \;\cdots\;準備の準備 \\&=&\cos{\left(\alpha\right)}\cos{\left(\beta\right)}+\cancel{\sin{\left(\alpha\right)}\sin{\left(\beta\right)}} +\cos{\left(\alpha\right)}\cos{\left(\beta\right)}-\cancel{\sin{\left(\alpha\right)}\sin{\left(\beta\right)}} \\&=&2\cos{\left(\alpha\right)}\cos{\left(\beta\right)} \\\cos{\left(\alpha\right)}\cos{\left(\beta\right)}&=&\frac{\cos{\left(\alpha-\beta\right)}+\cos{\left(\alpha+\beta\right)}}{2} \end{eqnarray}$$

準備3

$$\begin{eqnarray} \cos{\left(2x\right)}&=&\cos{\left(x+x\right)} \\&=&\cos(x)\cos(x)-\sin(x)\sin(x)\;\cdots\;準備の準備 \\&=&\cos^2{\left(x\right)}-\sin^2(x) \\&=&(1-\sin^2(x))-\sin^2(x) \\&=&1-2\sin^2(x) \\\cos{\left(2x\right)}-1&=&-2\sin^2(x) \\1-\cos{\left(2x\right)}&=&2\sin^2(x) \\\sin^2(x)&=&\frac{1-\cos(2x)}{2}=\frac{1}{2}-\frac{\cos(2x)}{2} \end{eqnarray}$$

準備4

$$\begin{eqnarray} \cos{\left(2x\right)}&=&\cos{\left(x+x\right)} \\&=&\cos(x)\cos(x)-\sin(x)\sin(x)\;\cdots\;準備の準備 \\&=&\cos^2{\left(x\right)}-\sin^2(x) \\&=&\cos^2{\left(x\right)}-\left(1-\cos^2{\left(x\right)}\right) \\&=&2\cos^2(x)-1 \\\cos{\left(2x\right)}+1&=&2\cos^2(x) \\\cos^2(x)&=&\frac{1+\cos(2x)}{2}=\frac{1}{2}+\frac{\cos(2x)}{2} \end{eqnarray}$$

準備5

$$\begin{eqnarray} \\\sin{\left(\alpha-\beta\right)}+\sin{\left(\alpha+\beta\right)}&=& \sin{\left(\alpha\right)}\cos{\left(\beta\right)}-\cos{\left(\alpha\right)}\sin{\left(\beta\right)} +\left\{\sin{\left(\alpha\right)}\cos{\left(\beta\right)}+\cos{\left(\alpha\right)}\sin{\left(\beta\right)}\right\} \;\cdots\;準備の準備 \\&=&\sin{\left(\alpha\right)}\cos{\left(\beta\right)}\cancel{-\cos{\left(\alpha\right)}\sin{\left(\beta\right)}} +\sin{\left(\alpha\right)}\cos{\left(\beta\right)}\cancel{+\cos{\left(\alpha\right)}\sin{\left(\beta\right)}} \\&=&2\sin{\left(\alpha\right)}\cos{\left(\beta\right)} \\\sin{\left(\alpha\right)}\cos{\left(\beta\right)}&=&\frac{\sin{\left(\alpha-\beta\right)}+\sin{\left(\alpha+\beta\right)}}{2} \end{eqnarray}$$

準備6

$$\begin{eqnarray} \sin{\left(2x\right)}&=&\sin{\left(x+x\right)} \\&=&\sin{\left(x\right)}\cos{\left(x\right)}+\cos{\left(x\right)}\sin{\left(x\right)} \;\cdots\;準備の準備 \\&=&2\sin{\left(x\right)}\cos{\left(x\right)} \\\sin{\left(x\right)}\cos{\left(x\right)}&=&\frac{\sin{\left(2x\right)}}{2} \end{eqnarray}$$

\(\sin{\left(m\;x\right)}\sin{\left(n\;x\right)}\)

\(m,n\in\mathbb{N},m\ne n\)

$$\begin{eqnarray} &&\int_{0}^{2\pi}\sin{\left(m\;x\right)}\sin{\left(n\;x\right)}\mathrm{d}x\;\cdots\;m,n\in\mathbb{N},m\ne n \\&=&\int_{0}^{2\pi}\frac{1}{2}\left[ \cos{\left(mx-nx\right)} -\cos{\left(mx+nx\right)} \right]\mathrm{d}x\;\cdots\;準備1 \\&=&\int_{0}^{2\pi}\frac{1}{2}\left[ \cos{\left(\left(m-n\right)\;x\right)} -\cos{\left(\left(m+n\right)\;x\right)} \right]\mathrm{d}x \\&=&\frac{1}{2}\left[ \int_{0}^{2\pi}\cos{\left(\left(m-n\right)\;x\right)}\mathrm{d}x -\int_{0}^{2\pi}\cos{\left(\left(m+n\right)\;x\right)}\mathrm{d}x \right] \\&=&\frac{1}{2}\left[ \left[\frac{1}{m-n}\sin{\left(\left(m-n\right)\;x\right)}\right]_{0}^{2\pi} -\left[\frac{1}{m+n}\sin{\left(\left(m+n\right)\;x\right)}\right]_{0}^{2\pi} \right] \\&=&\frac{1}{2}\left[ \frac{1}{m-n} \left[\sin{\left(\left(m-n\right)\;2\pi\right)} - \sin{\left(\left(m-n\right)\;0\right)}\right] -\frac{1}{m+n} \left[\sin{\left(\left(m+n\right)\;2\pi\right)} - \sin{\left(\left(m+n\right)\;0\right)}\right] \right] \\&=&\frac{1}{2}\left[ \frac{1}{m-n}\left[0-0\right] -\frac{1}{m+n}\left[0-0\right] \right] \\&=&\frac{1}{2}\left[ \frac{0}{m-n} -\frac{0}{m+n} \right] \\&=&\frac{1}{2}\;0 \\&=&0 \end{eqnarray}$$

\(m,n\in\mathbb{N},m= n\)

$$\begin{eqnarray} &&\int_{0}^{2\pi}\sin{\left(m\;x\right)}\sin{\left(n\;x\right)}\mathrm{d}x\;\cdots\;m,n\in\mathbb{N},m=n \\&=&\int_{0}^{2\pi}\sin{\left(m\;x\right)}\sin{\left(m\;x\right)}\mathrm{d}x \\&=&\int_{0}^{2\pi}\sin^2{\left(m\;x\right)}\mathrm{d}x \\&=&\frac{1}{m}\int_{0}^{2m\pi}\sin^2{\left(u\right)}\mathrm{d}u\;\cdots\;u=mx,\frac{\mathrm{d}u}{\mathrm{d}x}=m,\mathrm{d}x=\frac{1}{m}\mathrm{d}u \\&=&\frac{1}{m}\int_{0}^{2m\pi}\left[\frac{1}{2}-\frac{1}{2}\cos{\left(2u\right)}\right]\mathrm{d}u\;\cdots\;準備3 \\&=&\frac{1}{2m}\left[\int_{0}^{2m\pi}\mathrm{d}u-\int_{0}^{2m\pi}\cos{\left(2u\right)}\mathrm{d}u\right] \\&=&\frac{1}{2m}\left[\left[u\right]_{0}^{2m\pi}-\left[\frac{1}{2}\sin{\left(2u\right)}\right]_0^{2m\pi}\right] \\&=&\frac{1}{2m}\left[\left[2m\pi-0\right]-\left[\frac{1}{2}\sin{\left(2\cdot2m\pi\right)}-\frac{1}{2}\sin{\left(2\cdot0\right)}\right]\right] \\&=&\frac{1}{2m}\left[2m\pi-\left[0-0\right]\right] \\&=&\frac{1}{\cancel{2m}}\cancel{2m}\pi \\&=&\pi \end{eqnarray}$$

\(\cos{\left(m\;x\right)}\cos{\left(n\;x\right)}\)

\(m,n\in\mathbb{N},m\ne n\)

$$\begin{eqnarray} &&\int_{0}^{2\pi}\cos{\left(m\;x\right)}\cos{\left(n\;x\right)}\mathrm{d}x\;\cdots\;m,n\in\mathbb{N},m\ne n \\&=&\int_{0}^{2\pi}\frac{1}{2}\left[ \cos{\left(mx-nx\right)} +\cos{\left(mx+nx\right)} \right]\mathrm{d}x\;\cdots\;準備2 \\&=&\int_{0}^{2\pi}\frac{1}{2}\left[ \cos{\left(\left(m-n\right)\;x\right)} +\cos{\left(\left(m+n\right)\;x\right)} \right]\mathrm{d}x \\&=&\frac{1}{2}\left[ \int_{0}^{2\pi}\cos{\left(\left(m-n\right)\;x\right)}\mathrm{d}x +\int_{0}^{2\pi}\cos{\left(\left(m+n\right)\;x\right)}\mathrm{d}x \right] \\&=&\frac{1}{2}\left[ \left[\frac{1}{m-n}\sin{\left(\left(m-n\right)\;x\right)}\right]_{0}^{2\pi} +\left[\frac{1}{m+n}\sin{\left(\left(m+n\right)\;x\right)}\right]_{0}^{2\pi} \right] \\&=&\frac{1}{2}\left[ \frac{1}{m-n} \left[\sin{\left(\left(m-n\right)\;2\pi\right)} - \sin{\left(\left(m-n\right)\;0\right)}\right] +\frac{1}{m+n} \left[\sin{\left(\left(m+n\right)\;2\pi\right)} - \sin{\left(\left(m+n\right)\;0\right)}\right] \right] \\&=&\frac{1}{2}\left[ \frac{1}{m-n}\left[0-0\right] +\frac{1}{m+n}\left[0-0\right] \right] \\&=&\frac{1}{2}\left[ \frac{0}{m-n} +\frac{0}{m+n} \right] \\&=&\frac{1}{2}\;0 \\&=&0 \end{eqnarray}$$

\(m,n\in\mathbb{N},m= n\)

$$\begin{eqnarray} &&\int_{0}^{2\pi}\cos{\left(m\;x\right)}\cos{\left(n\;x\right)}\mathrm{d}x\;\cdots\;m,n\in\mathbb{N},m=n \\&=&\int_{0}^{2\pi}\cos{\left(m\;x\right)}\cos{\left(m\;x\right)}\mathrm{d}x \\&=&\int_{0}^{2\pi}\cos^2{\left(m\;x\right)}\mathrm{d}x \\&=&\frac{1}{m}\int_{0}^{2m\pi}\cos^2{\left(u\right)}\mathrm{d}u\;\cdots\;u=mx,\frac{\mathrm{d}u}{\mathrm{d}x}=m,\mathrm{d}x=\frac{1}{m}\mathrm{d}u \\&=&\frac{1}{m}\int_{0}^{2m\pi}\left[\frac{1}{2}+\frac{1}{2}\cos{\left(2u\right)}\right]\mathrm{d}u\;\cdots\;準備4 \\&=&\frac{1}{2m}\left[\int_{0}^{2m\pi}\mathrm{d}u+\int_{0}^{2m\pi}\cos{\left(2u\right)}\mathrm{d}u\right] \\&=&\frac{1}{2m}\left[\left[u\right]_{0}^{2m\pi}+\left[\frac{1}{2}\sin{\left(2u\right)}\right]_0^{2m\pi}\right] \\&=&\frac{1}{2m}\left[\left[2m\pi-0\right]+\left[\frac{1}{2}\sin{\left(2\cdot2m\pi\right)}-\frac{1}{2}\sin{\left(2\cdot0\right)}\right]\right] \\&=&\frac{1}{2m}\left[2m\pi+\left[0-0\right]\right] \\&=&\frac{1}{\cancel{2m}}\cancel{2m}\pi \\&=&\pi \end{eqnarray}$$

\(\sin{\left(m\;x\right)}\cos{\left(n\;x\right)}\)

\(m,n\in\mathbb{N},m\ne n\)

$$\begin{eqnarray} &&\int_{0}^{2\pi}\sin{\left(m\;x\right)}\cos{\left(n\;x\right)}\mathrm{d}x\;\cdots\;m,n\in\mathbb{N},m\ne n \\&=&\int_{0}^{2\pi}\frac{1}{2}\left[ \sin{\left(mx-nx\right)} +\sin{\left(mx+nx\right)} \right]\mathrm{d}x\;\cdots\;準備5 \\&=&\int_{0}^{2\pi}\frac{1}{2}\left[ \sin{\left((m-n)x\right)} +\sin{\left((m+n)x\right)} \right]\mathrm{d}x \\&=&\frac{1}{2}\left[ \int_{0}^{2\pi}\sin{\left((m-n)x\right)}\mathrm{d}x +\int_{0}^{2\pi}\sin{\left((m+n)x\right)}\mathrm{d}x \right] \\&=&\frac{1}{2}\left[ \left[ \frac{-1}{m-n} \cos{\left((m-n)x\right)} \right]_{0}^{2\pi} +\left[ \frac{-1}{m+n} \cos{\left((m+n)x\right)} \right]_{0}^{2\pi} \right] \\&=&\frac{1}{2}\left[ \frac{-1}{m-n}\left[ \cos{\left((m-n)2\pi\right)}-\cos{\left((m-n)0\right)} \right] +\frac{-1}{m+n}\left[ \cos{\left((m-n)2\pi\right)}-\cos{\left((m-n)0\right)} \right] \right] \\&=&\frac{1}{2}\left[ \frac{-1}{m-n}\left[1-1\right] +\frac{-1}{m+n}\left[1-1\right] \right] \\&=&\frac{1}{2}\left[ \frac{-1}{m-n}0 +\frac{-1}{m+n}0 \right] \\&=&\frac{1}{2}\left[ 0 +0 \right] \\&=&\frac{1}{2}0 \\&=&0 \end{eqnarray}$$

\(m,n\in\mathbb{N},m= n\)

$$\begin{eqnarray} &&\int_{0}^{2\pi}\sin{\left(m\;x\right)}\cos{\left(n\;x\right)}\mathrm{d}x\;\cdots\;m,n\in\mathbb{N},m= n \\&=&\int_{0}^{2\pi}\sin{\left(m\;x\right)}\cos{\left(m\;x\right)}\mathrm{d}x \\&=&\int_{0}^{2\pi}\frac{1}{2}\sin{\left(2m\;x\right)}\mathrm{d}x\;\cdots\;準備6 \\&=&\frac{1}{2}\int_{0}^{4m\pi}\frac{1}{2m}\sin{\left(u\right)}\mathrm{d}u\;\cdots\;u=2mx,\;\frac{\mathrm{d}u}{\mathrm{d}x}=2m,\;\mathrm{d}x=\frac{1}{2m}\mathrm{d}u \\&=&\frac{1}{4m}\left[-\cos{\left(u\right)}\right]_{0}^{4m\pi} \\&=&\frac{1}{4m}\left[-\cos{\left(4m\pi\right)}-\left(-\cos{\left(0\right)}\right)\right] \\&=&\frac{1}{4m}\left[-1-\left(-1\right)\right] \\&=&\frac{1}{4m}\left[-1+1\right] \\&=&\frac{1}{4m}0 \\&=&0 \end{eqnarray}$$

まとめ

$$\begin{eqnarray} m,n\in\mathbb{N} \\\int_{0}^{2\pi}\sin{\left(m\;x\right)}\sin{\left(n\;x\right)}\mathrm{d}x&=& \begin{cases} \pi\;\cdots\;m=n \\0\;\cdots\;m\ne n \end{cases} \\\int_{0}^{2\pi}\cos{\left(m\;x\right)}\cos{\left(n\;x\right)}\mathrm{d}x&=& \begin{cases} \pi\;\cdots\;m=n \\0\;\cdots\;m\ne n \end{cases} \\\int_{0}^{2\pi}\sin{\left(m\;x\right)}\cos{\left(n\;x\right)}\mathrm{d}x&=&0 \end{eqnarray}$$

0 件のコメント:

コメントを投稿