間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

sin(mx)sin(nx), cos(mx)cos(nx), sin(mx)cos(nx) の0から2πまでの積分

準備

準備の準備

cos(α+β)=cos(α)cos(β)sin(α)sin(β)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)

準備1

cos(αβ)cos(α+β)=cos(α)cos(β)+sin(α)sin(β){cos(α)cos(β)sin(α)sin(β)}=cos(α)cos(β)+sin(α)sin(β)cos(α)cos(β)+sin(α)sin(β)=2sin(α)sin(β)sin(α)sin(β)=cos(αβ)cos(α+β)2

準備2

cos(αβ)+cos(α+β)=cos(α)cos(β)+sin(α)sin(β)+{cos(α)cos(β)sin(α)sin(β)}=cos(α)cos(β)+sin(α)sin(β)+cos(α)cos(β)sin(α)sin(β)=2cos(α)cos(β)cos(α)cos(β)=cos(αβ)+cos(α+β)2

準備3

cos(2x)=cos(x+x)=cos(x)cos(x)sin(x)sin(x)=cos2(x)sin2(x)=(1sin2(x))sin2(x)=12sin2(x)cos(2x)1=2sin2(x)1cos(2x)=2sin2(x)sin2(x)=1cos(2x)2=12cos(2x)2

準備4

cos(2x)=cos(x+x)=cos(x)cos(x)sin(x)sin(x)=cos2(x)sin2(x)=cos2(x)(1cos2(x))=2cos2(x)1cos(2x)+1=2cos2(x)cos2(x)=1+cos(2x)2=12+cos(2x)2

準備5

sin(αβ)+sin(α+β)=sin(α)cos(β)cos(α)sin(β)+{sin(α)cos(β)+cos(α)sin(β)}=sin(α)cos(β)cos(α)sin(β)+sin(α)cos(β)+cos(α)sin(β)=2sin(α)cos(β)sin(α)cos(β)=sin(αβ)+sin(α+β)2

準備6

sin(2x)=sin(x+x)=sin(x)cos(x)+cos(x)sin(x)=2sin(x)cos(x)sin(x)cos(x)=sin(2x)2

sin(mx)sin(nx)

m,nN,mn

02πsin(mx)sin(nx)dxm,nN,mn=02π12[cos(mxnx)cos(mx+nx)]dx1=02π12[cos((mn)x)cos((m+n)x)]dx=12[02πcos((mn)x)dx02πcos((m+n)x)dx]=12[[1mnsin((mn)x)]02π[1m+nsin((m+n)x)]02π]=12[1mn[sin((mn)2π)sin((mn)0)]1m+n[sin((m+n)2π)sin((m+n)0)]]=12[1mn[00]1m+n[00]]=12[0mn0m+n]=120=0

m,nN,m=n

02πsin(mx)sin(nx)dxm,nN,m=n=02πsin(mx)sin(mx)dx=02πsin2(mx)dx=1m02mπsin2(u)duu=mx,dudx=m,dx=1mdu=1m02mπ[1212cos(2u)]du3=12m[02mπdu02mπcos(2u)du]=12m[[u]02mπ[12sin(2u)]02mπ]=12m[[2mπ0][12sin(22mπ)12sin(20)]]=12m[2mπ[00]]=12m2mπ=π

cos(mx)cos(nx)

m,nN,mn

02πcos(mx)cos(nx)dxm,nN,mn=02π12[cos(mxnx)+cos(mx+nx)]dx2=02π12[cos((mn)x)+cos((m+n)x)]dx=12[02πcos((mn)x)dx+02πcos((m+n)x)dx]=12[[1mnsin((mn)x)]02π+[1m+nsin((m+n)x)]02π]=12[1mn[sin((mn)2π)sin((mn)0)]+1m+n[sin((m+n)2π)sin((m+n)0)]]=12[1mn[00]+1m+n[00]]=12[0mn+0m+n]=120=0

m,nN,m=n

02πcos(mx)cos(nx)dxm,nN,m=n=02πcos(mx)cos(mx)dx=02πcos2(mx)dx=1m02mπcos2(u)duu=mx,dudx=m,dx=1mdu=1m02mπ[12+12cos(2u)]du4=12m[02mπdu+02mπcos(2u)du]=12m[[u]02mπ+[12sin(2u)]02mπ]=12m[[2mπ0]+[12sin(22mπ)12sin(20)]]=12m[2mπ+[00]]=12m2mπ=π

sin(mx)cos(nx)

m,nN,mn

02πsin(mx)cos(nx)dxm,nN,mn=02π12[sin(mxnx)+sin(mx+nx)]dx5=02π12[sin((mn)x)+sin((m+n)x)]dx=12[02πsin((mn)x)dx+02πsin((m+n)x)dx]=12[[1mncos((mn)x)]02π+[1m+ncos((m+n)x)]02π]=12[1mn[cos((mn)2π)cos((mn)0)]+1m+n[cos((mn)2π)cos((mn)0)]]=12[1mn[11]+1m+n[11]]=12[1mn0+1m+n0]=12[0+0]=120=0

m,nN,m=n

02πsin(mx)cos(nx)dxm,nN,m=n=02πsin(mx)cos(mx)dx=02π12sin(2mx)dx6=1204mπ12msin(u)duu=2mx,dudx=2m,dx=12mdu=14m[cos(u)]04mπ=14m[cos(4mπ)(cos(0))]=14m[1(1)]=14m[1+1]=14m0=0

まとめ

m,nN02πsin(mx)sin(nx)dx={πm=n0mn02πcos(mx)cos(nx)dx={πm=n0mn02πsin(mx)cos(nx)dx=0

0 件のコメント:

コメントを投稿