\(a^{\log_{b}c}=c^{\log_{b}a}\)
$$\begin{eqnarray}
&&a^{\log_{b}c}\\
&=&a^{\frac{\log_{a}c}{\log_{a}b}}&\;\cdots\;&\log_AB=\frac{\log_CA}{\log_CB}(底の変換)\\
&=&\left(a^{\log_{a}c}\right)^{\frac{1}{\log_{a}b}}&\;\cdots\;&A^{BC}=\left(A^B\right)^C\\
&=&c^{\frac{1}{\log_{a}b}}&\;\cdots\;&A^{\log_AB}=B\\
&=&c^{\log_{b}a}&\;\cdots\;&\href{https://shikitenkai.blogspot.com/2022/02/blog-post.html}{a^{\frac{1}{\log_{b}c}}=a^{\log_{c}b}}
\end{eqnarray}$$