間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バネマスダンパー系,運動方程式,ラプラス変換,逆ラプラス変換,sin凾数

バネマスダンパー系

運動方程式

$$\begin{eqnarray} m\ddot{x} &+&c\dot{x} &+&kx &=&F\sin{\left(\omega_f t\right)} \\ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&\frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t} &+&\frac{k}{m}x &=&\frac{F}{m}\sin{\left(\omega_f t\right)} \\ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} &+&\omega_0^2x &=&\frac{F}{m}\sin{\left(\omega_f t\right)} \;\cdots\;\gamma=\frac{c}{2m},\;\omega_0^2=\frac{k}{m} \end{eqnarray}$$

ラプラス変換

$$\begin{eqnarray} \mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right.&+&\left.2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} \right.&+&\left.\omega_0^2x \right]&=\mathfrak{L}\left[\frac{F}{m}\sin{\left(\omega_f t\right)}\right] \\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right] &+&\mathfrak{L}\left[ 2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} \right] &+&\mathfrak{L}\left[ \omega_0^2 x\right] &=\mathfrak{L}\left[\frac{F}{m}\sin{\left(\omega_f t\right)}\right] \\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right] &+&2\gamma\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t} \right] &+&\omega_0^2\mathfrak{L}\left[ x\right] &=\mathfrak{L}\left[\frac{F}{m}\sin{\left(\omega_f t\right)}\right] \\ s^2X-sx_0 -v_0 &+&2\gamma\left(sX-x_0 \right) &+&\omega_0^2X &=\frac{F}{m}\frac{\omega}{s^2+\omega_f^2} \\ \\&&&&&\;\ldots\;\mathfrak{L}\left[x\right]=X \\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/fracmathrmdfmathrmdt.html}{\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t}\right] =s^2X-x_0,\;x_0=x(0)} \\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/blog-post_62.html}{\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t}\right] =s^2X-sx_0 -v_0,\;v_0=x'(0)} \\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/sin.html}{\mathfrak{L}\left[\sin{\left(\omega_f t\right)}\right]=\frac{\omega_f}{s^2+\omega_f^2}} \end{eqnarray}$$

Xについて解く

$$\begin{eqnarray} s^2X+2\gamma sX+\omega_0^2X &=& sx_0 +v_0 +2\gamma x_0 +\frac{F}{m}\frac{\omega_f}{s^2+\omega_f^2} \\ \left(s^2+2\gamma s+\omega_0^2\right)X &=& sx_0 +v_0 +2\gamma x_0 +\frac{F}{m}\frac{\omega_f}{s^2+\omega_f^2} \\ X&=&\frac{sx_0 +v_0 +2\gamma x_0 }{s^2+2\gamma s+\omega_0^2}+\frac{F}{m}\frac{1}{s^2+2\gamma s+\omega_0^2}\frac{\omega_f}{s^2+\omega_f^2} \\&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}\frac{\omega_f}{s^2+\omega_f^2} \end{eqnarray}$$

部分分数分解 準備

$$\begin{eqnarray} \\X&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}\frac{\omega_f}{s^2+\omega_f^2} \\&=&\frac{C_1 }{s-\lambda_1}+\frac{C_2 }{s-\lambda_2} +\frac{F}{m}\left\{ \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} +\frac{C_5s+C_6}{s^2+\omega_f^2} \right\} \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \\&&+\scriptsize{\frac{F}{m}\left\{ \frac{ C_3\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)+C_4\left(s-\lambda_1\right)\left(s^2+\omega_f^2\right)+\left(C_5s+C_6\right)\left(s-\lambda_1\right)\left(s-\lambda_2\right) }{ s\left(s-\lambda_1\right)\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)} \right\} } \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \\&&+\scriptsize{ \frac{F}{m}\left\{ \frac{ C_3\left(s^3+\omega_f^2s-\lambda_2 s^2 -\lambda_2\omega_f^2\right) +C_4\left(s^3+\omega_f^2s-\lambda_1 s^2 -\lambda_1\omega_f^2\right) +C_5\left\{s^3-\left(\lambda_1+\lambda_2\right)s^2+\lambda_1\lambda_2 s\right\} +C_6\left\{s^2-\left(\lambda_1+\lambda_2\right)s+\lambda_1\lambda_2\right\} }{ \left(s-\lambda_1\right)\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)} \right\} } \\&=&\frac{(C_1 +C_2 )s-(C_1 \lambda_2+C_2 \lambda_1)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \\&&+\small{\frac{F}{m}\left[ \frac{ \left(C_3+C_4+C_5\right)s^3 +\left\{-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2)+C_6\right\}s^2 +\left\{C_3\omega_f^2+C_4\omega_f^2+C_5\lambda_1\lambda_2-C_6(\lambda_1+\lambda_2)\right\}s +\left(-C_3\lambda_2\omega_f^2 -C_4\lambda_1\omega_f^2 +C_6\lambda_1\lambda_2\right) } { \left(s-\lambda_1\right)\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)} \right] } \end{eqnarray}$$

部分分数分解 第1項分子の係数比較

$$\begin{eqnarray} sx_0 +v_0 +2\gamma x_0&=&\left(C_1 +C_2 \right)s-\left(C_1 \lambda_2+C_2 \lambda_1\right) \end{eqnarray}$$ $$\left\{\begin{eqnarray} x_0&=&C_1 +C_2 \\v_0 +2\gamma x_0&=&-\left(C_1 \lambda_2+C_2 \lambda_1\right) \end{eqnarray}\right.$$

部分分数分解 \(C_2\)

$$\begin{eqnarray} x_0&=&C_1+C_2 \\C_1&=&x_0-C_2 \\v_0+2\gamma x_0&=&-\left\{\left(x_0-C_2\right)\lambda_2+C_2\lambda_1\right\} \\&=&-\lambda_2x_0+C_2\lambda_2-C_2\lambda_1 \\v_0+2\gamma x_0+\lambda_2 x_0&=&C_2\left(\lambda_2-\lambda_1\right) \\C_2 &=&\frac{v_0+2\gamma x_0+\lambda_2 x_0}{\lambda_2-\lambda_1} \\&&\;\ldots\;\lambda_{1,2}=\frac{-2\gamma\pm\sqrt{\left(2\gamma\right)^2-4\cdot1\cdot\omega_0^2}}{2\cdot1}=-\gamma\pm\sqrt{\gamma^2-\omega_0}=-\gamma\pm\xi \\&&\;\ldots\;\lambda_2-\lambda_1=-\gamma-\xi -\left(-\gamma+\xi \right)=-2\xi \\&=&\frac{v_0+2\gamma x_0+\left(-\gamma-\xi \right) x_0}{-2\xi } \\&=&\frac{v_0+\gamma x_0-\xi x_0}{-2\xi } \\&=&\frac{v_0+\gamma x_0}{-2\xi }-\frac{\xi x_0}{-2\xi } \\&=&\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi } \end{eqnarray}$$

部分分数分解 \(C_1\)

$$\begin{eqnarray} C_1&=&x_0-C_2 \\&=&x_0-\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) \\&=&\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi } \end{eqnarray}$$

部分分数分解 第2項分子の係数比較

$$\begin{eqnarray} \omega_f&=&\left(C_3+C_4+C_5\right)s^3 +\left\{-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2)+C_6\right\}s^2 +\left\{C_3\omega_f^2+C_4\omega_f^2+C_5\lambda_1\lambda_2-C_6(\lambda_1+\lambda_2)\right\}s +\left(-C_3\lambda_2\omega_f^2 -C_4\lambda_1\omega_f^2 +C_6\lambda_1\lambda_2\right) \end{eqnarray}$$ $$\left\{\begin{eqnarray} 0&=&&C_3&+&C_4&+&C_5& \\0&=&-\lambda_2&C_3&-\lambda_1&C_4&-(\lambda_1+\lambda_2)&C_5&+&C_6 \\0&=&\omega_f^2&C_3&+\omega_f^2&C_4&+\lambda_1\lambda_2&C_5&-(\lambda_1+\lambda_2)&C_6 \\\omega_f&=&-\lambda_2\omega_f^2&C_3&-\lambda_1\omega_f^2&C_4&&&+\lambda_1\lambda_2&C_6 \end{eqnarray}\right.$$ 行列とベクトルで表現すると以下のようになる. $$\begin{eqnarray} \begin{bmatrix} 0\\0\\0\\\omega_f \end{bmatrix} &=& \begin{bmatrix} 1&1&1&0 \\-\lambda_2&-\lambda_1&-(\lambda_1+\lambda_2)&1 \\\omega_f^2&\omega_f^2&\lambda_1\lambda_2&-(\lambda_1+\lambda_2) \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2&0&\lambda_1\lambda_2 \end{bmatrix} \begin{bmatrix} C_3\\C_4\\C_5\\C_6 \end{bmatrix} \end{eqnarray}$$ 行列とベクトルを以下の文字で表すとする. $$\begin{eqnarray} \boldsymbol{y}=\begin{bmatrix} 0\\0\\0\\\omega_f \end{bmatrix} ,\;\boldsymbol{A}=\begin{bmatrix} 1&1&1&0 \\-\lambda_2&-\lambda_1&-(\lambda_1+\lambda_2)&1 \\\omega_f^2&\omega_f^2&\lambda_1\lambda_2&-(\lambda_1+\lambda_2) \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2&0&\lambda_1\lambda_2 \end{bmatrix} ,\;\boldsymbol{x}=\begin{bmatrix}C_3\\C_4\\C_5\\C_6\end{bmatrix} \end{eqnarray}$$ これを\(\boldsymbol{x}\)について解く. $$\begin{eqnarray} \\\boldsymbol{y}&=&\boldsymbol{A}\boldsymbol{x} \\\boldsymbol{A}^{-1}\boldsymbol{y}&=&\boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{x} \\\boldsymbol{x}&=&\boldsymbol{A}^{-1}\boldsymbol{y} \\\boldsymbol{x}&=&\frac{\tilde{\boldsymbol{A}}}{\left|\boldsymbol{A}\right|}\boldsymbol{y} \;\ldots\;\href{https://shikitenkai.blogspot.com/2021/05/blog-post_96.html}{\boldsymbol{A}^{-1}=\frac{\tilde{\boldsymbol{A}}}{\left|\boldsymbol{A}\right|}},\;\href{https://shikitenkai.blogspot.com/2021/05/blog-post_3.html}{\tilde{\boldsymbol{A}}は余因子行列} \\\begin{bmatrix} C_3\\C_4\\C_5\\C_6 \end{bmatrix}&=& \frac{1}{\left|\boldsymbol{A}\right|} \begin{bmatrix} (-1)^{1+1}\left|\boldsymbol{M}_{11}\right| & (-1)^{1+2}\left|\boldsymbol{M}_{21}\right| & (-1)^{1+3}\left|\boldsymbol{M}_{31}\right| & (-1)^{1+4}\left|\boldsymbol{M}_{41}\right| \\(-1)^{2+1}\left|\boldsymbol{M}_{12}\right| & (-1)^{2+2}\left|\boldsymbol{M}_{22}\right| & (-1)^{2+3}\left|\boldsymbol{M}_{32}\right| & (-1)^{2+4}\left|\boldsymbol{M}_{42}\right| \\(-1)^{3+1}\left|\boldsymbol{M}_{13}\right| & (-1)^{3+2}\left|\boldsymbol{M}_{23}\right| & (-1)^{3+3}\left|\boldsymbol{M}_{33}\right| & (-1)^{3+4}\left|\boldsymbol{M}_{43}\right| \\(-1)^{4+1}\left|\boldsymbol{M}_{14}\right| & (-1)^{4+2}\left|\boldsymbol{M}_{24}\right| & (-1)^{4+3}\left|\boldsymbol{M}_{34}\right| & (-1)^{4+4}\left|\boldsymbol{M}_{44}\right| \end{bmatrix} \begin{bmatrix} 0\\0\\0\\\omega_f \end{bmatrix} = \frac{\omega_f}{\left|\boldsymbol{A}\right|} \begin{bmatrix} -\left|\boldsymbol{M}_{41}\right| \\\;\;\;\left|\boldsymbol{M}_{42}\right| \\-\left|\boldsymbol{M}_{43}\right| \\\;\;\;\left|\boldsymbol{M}_{44}\right| \end{bmatrix} \\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/05/blog-post_3.html}{\boldsymbol{M}_{ij}:元の行列\boldsymbol{A}からi行とj列を除いた行列(添え字の順序に注意)} \end{eqnarray}$$

\(\left|\boldsymbol{M}_{3*}\right|\)及び\(\left|\boldsymbol{A}\right|\)の計算

$$\begin{eqnarray} \left|\boldsymbol{M}_{41}\right| &=&\begin{vmatrix} 1&1&0 \\-\lambda_1&-\left(\lambda_1+\lambda_2\right)&1 \\\omega_f^2&\lambda_1\lambda_2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} =\begin{vmatrix} -\left(\lambda_1+\lambda_2\right)&1 \\\lambda_1\lambda_2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} -\begin{vmatrix} -\lambda_1&1 \\\omega_f^2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} \\&=&\left\{-\left(\lambda_1+\lambda_2\right)\right\}\cdot\left\{-\left(\lambda_1+\lambda_2\right)\right\}-1\cdot\lambda_1\lambda_2 -\left[ -\lambda_1\cdot\left\{-\left(\lambda_1+\lambda_2\right)\right\}-1\cdot\omega_f^2 \right] \\&=&\cancel{\lambda_1^2}\cancel{+2\lambda_1\lambda_2}+\lambda_2^2\cancel{-\lambda_1\lambda_2}\cancel{-\lambda_1^2}\cancel{-\lambda_1\lambda_2}+\omega_f^2 \\&=&\lambda_2^2+\omega_f^2 \\ \left|\boldsymbol{M}_{42}\right| &=&\begin{vmatrix} 1&1&0 \\-\lambda_2&-\left(\lambda_1+\lambda_2\right)&1 \\\omega_f^2&\lambda_1\lambda_2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} =\begin{vmatrix} -\left(\lambda_1+\lambda_2\right)&1 \\\lambda_1\lambda_2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} -\begin{vmatrix} -\lambda_2&1 \\\omega_f^2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} \\&=&\left\{-\left(\lambda_1+\lambda_2\right)\right\}\cdot\left\{-\left(\lambda_1+\lambda_2\right)\right\}-1\cdot\lambda_1\lambda_2 -\left[ -\lambda_2\cdot\left\{-\left(\lambda_1+\lambda_2\right)\right\}-1\cdot\omega_f^2 \right] \\&=&\lambda_1^2\cancel{+2\lambda_1\lambda_2}\cancel{+\lambda_2^2}\cancel{-\lambda_1\lambda_2}\cancel{-\lambda_1\lambda_2}\cancel{-\lambda_2^2}+\omega_f^2 \\&=&\lambda_1^2+\omega_f^2 \\ \left|\boldsymbol{M}_{43}\right| &=&\begin{vmatrix} 1&1&0 \\-\lambda_2&-\lambda_1&1 \\\omega_f^2&\omega_f^2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} =\begin{vmatrix} -\lambda_1&1 \\\omega_f^2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} -\begin{vmatrix} -\lambda_2&1 \\\omega_f^2&-\left(\lambda_1+\lambda_2\right) \end{vmatrix} \\&=&-\lambda_1\cdot\left\{-\left(\lambda_1+\lambda_2\right)\right\}-1\cdot\omega_f^2 -\left[ -\lambda_2\cdot\left\{-\left(\lambda_1+\lambda_2\right)\right\}-1\cdot\omega_f^2 \right] \\&=&\lambda_1^2\cancel{+\lambda_1\lambda_2}\cancel{-\omega_f^2}\cancel{-\lambda_1\lambda_2}-\lambda_2^2\cancel{+\omega_f} \\&=&\lambda_1^2-\lambda_2^2 \\&=&\left(\lambda_1+\lambda_2\right)\left(\lambda_1-\lambda_2\right) \\ \left|\boldsymbol{M}_{44}\right| &=&\begin{vmatrix} 1&1&1 \\-\lambda_2&-\lambda_1&-(\lambda_1+\lambda_2) \\\omega_f^2&\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} =\begin{vmatrix} -\lambda_1&-(\lambda_1+\lambda_2) \\\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} -\begin{vmatrix} -\lambda_2&-(\lambda_1+\lambda_2) \\\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} +\begin{vmatrix} -\lambda_2&-\lambda_1 \\\omega_f^2&\omega_f^2 \end{vmatrix} \\&=& -\lambda_1\cdot\lambda_1\lambda_2-\left\{-\left(\lambda_1+\lambda_2\right)\right\}\cdot\omega_f^2 -\left[-\lambda_2\cdot\lambda_1\lambda_2-\left\{-\left(\lambda_1+\lambda_2\right)\right\}\cdot\omega_f^2\right] +\left(-\lambda_2\right)\omega_f^2-\left(-\lambda_1\right)\omega_f^2 \\&=& -\lambda_1^2\lambda_2\cancel{+\lambda_1\omega_f^2}\cancel{+\lambda_2\omega_f^2} +\lambda_1\lambda_2^2\cancel{-\lambda_1\omega_f^2}\cancel{-\lambda_2\omega_f^2} -\lambda_2\omega_f^2+\lambda_1\omega_f^2 \\&=&-\lambda_1^2\lambda_2+\lambda_1\lambda_2^2-\lambda_2\omega_f^2+\lambda_1\omega_f^2 \\&=&-\lambda_1\lambda_2\left(\lambda_1-\lambda_2\right)+\left(\lambda_1-\lambda_2\right)\omega_f^2 \\&=&-\left(\lambda_1\lambda_2-\omega_f^2\right)\left(\lambda_1-\lambda_2\right) \\ \\\left|\boldsymbol{A}\right| &=& \color{red}{a_{41}(-1)^{4+1}\left|\boldsymbol{M}_{41}\right|} \color{blue}{+a_{42}(-1)^{4+2}\left|\boldsymbol{M}_{42}\right|} \color{green}{+a_{43}(-1)^{4+3}\left|\boldsymbol{M}_{43}\right|} \color{magenta}{+a_{44}(-1)^{4+4}\left|\boldsymbol{M}_{44}\right|} \\&=& \color{red}{-\lambda_2\omega_f^2\cdot-1\cdot\left\{\left(\lambda_2^2+\omega_f^2\right)\right\}} \color{blue}{-\lambda_1\omega_f^2\cdot1\cdot\left\{\left(\lambda_1^2+\omega_f^2\right)\right\}} \color{green}{+0\cdot-1\cdot\left\{\left(\lambda_1^2-\lambda_2^2\right)\right\}} \color{magenta}{+\lambda_1\lambda_2\cdot1\cdot\left\{\left(\omega_f^2-\lambda_1\lambda_2\right)\left(\lambda_1-\lambda_2\right)\right\}} \\&=& \color{red}{\lambda_2\omega_f^2\left(\lambda_2^2+\omega_f^2\right)} \color{blue}{-\lambda_1\omega_f^2\left(\lambda_1^2+\omega_f^2\right)} \color{magenta}{+\lambda_1\lambda_2\left\{ \left(\omega_f^2-\lambda_1\lambda_2\right)\left(\lambda_1-\lambda_2\right) \right\} } \\&=& \color{red}{\lambda_2\omega_f^2\left(\lambda_2^2+\omega_f^2\right)} \color{blue}{-\lambda_1\omega_f^2\left(\lambda_1^2+\omega_f^2\right)} \color{magenta}{ +\lambda_1\lambda_2\left(\omega_f^2-\lambda_1\lambda_2\right)\left(\lambda_1-\lambda_2\right) } \\&=& \color{red}{\lambda_2\omega_f^2\left(\lambda_2^2+\omega_f^2\right)} \color{blue}{-\lambda_1\omega_f^2\left(\lambda_1^2+\omega_f^2\right)} \color{magenta}{ -\lambda_1^2\lambda_2^2\left(\lambda_1-\lambda_2\right) +\lambda_1\lambda_2\omega_f^2\left(\lambda_1-\lambda_2\right) } \\&=& \lambda_2\omega_f^2\left(\lambda_2^2+\omega_f^2+\lambda_1^2\right) -\lambda_1\omega_f^2\left(\lambda_1^2+\omega_f^2+\lambda_2^2\right) -\lambda_1^2\lambda_2^2\left(\lambda_1-\lambda_2\right) \\&=& \left(\lambda_2\omega_f^2-\lambda_1\omega_f^2\right)\left(\lambda_1^2+\lambda_2^2+\omega_f^2\right) -\lambda_1^2\lambda_2^2\left(\lambda_1-\lambda_2\right) \\&=& -\omega_f^2\left(\lambda_1-\lambda_2\right)\left(\lambda_1^2+\lambda_2^2+\omega_f^2\right) -\lambda_1^2\lambda_2^2\left(\lambda_1-\lambda_2\right) \\&=& -\left(\lambda_1-\lambda_2\right)\left(\omega_f^2\left(\lambda_1^2+\lambda_2^2+\omega_f^2\right)+\lambda_1^2\lambda_2^2\right) \\&=& -\left(\lambda_1-\lambda_2\right)\left(\lambda_1^2\omega_f^2+\lambda_2^2\omega_f^2+\omega_f^4+\lambda_1^2\lambda_2^2\right) \\&=& -\left(\lambda_1-\lambda_2\right)\left(\lambda_1^2+\omega_f^2\right)\left(\lambda_2^2+\omega_f^2\right) \end{eqnarray}$$

部分分数分解 \(C_3,\;C_4,\;C_5,\;C_6\)

$$\begin{eqnarray} \begin{bmatrix} C_3\\C_4\\C_5\\C_6 \end{bmatrix}&=& \frac{\omega_f}{\left|\boldsymbol{A}\right|} \begin{bmatrix} -\left|\boldsymbol{M}_{41}\right| \\\;\;\;\left|\boldsymbol{M}_{42}\right| \\-\left|\boldsymbol{M}_{43}\right| \\\;\;\;\left|\boldsymbol{M}_{44}\right| \end{bmatrix} = \omega_f \begin{bmatrix} \cancel{-}\frac{\cancel{\left(\lambda_2^2+\omega_f^2\right)}} {\cancel{-}\left(\lambda_1-\lambda_2\right)\left(\lambda_1^2+\omega_f^2\right)\cancel{\left(\lambda_2^2+\omega_f^2\right)}} \\\frac{\cancel{\left(\lambda_1^2+\omega_f^2\right)}} {-\left(\lambda_1-\lambda_2\right)\cancel{\left(\lambda_1^2+\omega_f^2\right)}\left(\lambda_2^2+\omega_f^2\right)} \\\cancel{-}\frac{\left(\lambda_1+\lambda_2\right)\cancel{\left(\lambda_1-\lambda_2\right)}} {\cancel{-}\cancel{\left(\lambda_1-\lambda_2\right)}\left(\lambda_1^2+\omega_f^2\right)\left(\lambda_2^2+\omega_f^2\right)} \\\frac{\cancel{-}\left(\lambda_1\lambda_2-\omega_f^2\right)\cancel{\left(\lambda_1-\lambda_2\right)}} {\cancel{-}\cancel{\left(\lambda_1-\lambda_2\right)}\left(\lambda_1^2+\omega_f^2\right)\left(\lambda_2^2+\omega_f^2\right)} \end{bmatrix} = \begin{bmatrix} \frac{\omega_f}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)} \\\frac{-\omega_f}{(\lambda_1 - \lambda_2)(\lambda_2^2 + \omega_f^2)} \\\frac{\omega_f(\lambda_1 + \lambda_2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \\\frac{\omega_f(\lambda_1\lambda_2 - \omega_f^2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \end{bmatrix} \end{eqnarray}$$

部分分数分解 まとめる

$$\begin{eqnarray} X&=& \frac{C_1}{s-\lambda_1} +\frac{C_2}{s-\lambda_2} +\frac{F}{m}\left( \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} +\frac{C_5s+C_6}{s^2+\omega_f^2} \right) \\&=& \left( \frac{C_1}{s-\lambda_1} +\frac{C_2}{s-\lambda_2} \right) +\frac{F}{m}\left( \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} \right) +\frac{F}{m}\left( \frac{C_5s+C_6}{s^2+\omega_f^2} \right) \\&=& \left( \frac{\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }}{s-\lambda_1} +\frac{\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }}{s-\lambda_2} \right) +\frac{F}{m}\left( \frac{\frac{\omega_f}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)}}{s-\lambda_1} +\frac{\frac{-\omega_f}{(\lambda_1 - \lambda_2)(\lambda_2^2 + \omega_f^2)}}{s-\lambda_2} \right) +\frac{F}{m}\left( \frac{\frac{\omega_f(\lambda_1 + \lambda_2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\;s +\frac{\omega_f(\lambda_1\lambda_2 - \omega_f^2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}}{s^2+\omega_f^2} \right) \\&=& \left\{ \frac{\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi}}{s-\lambda_1} +\frac{\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi}}{s-\lambda_2} \right\} \\&&+\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \frac{\omega_f(\lambda_2^2 + \omega_f^2)}{s-\lambda_1} +\frac{-\omega_f(\lambda_1^2 + \omega_f^2)}{s-\lambda_2} \right\} \\&&+\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \frac{\omega_f\left(\lambda_1 + \lambda_2\right)\left(\lambda_1 - \lambda_2\right)s +\omega_f\left(\lambda_1\lambda_2 - \omega_f^2\right)\left(\lambda_1 - \lambda_2\right)} {s^2+\omega_f^2} \end{eqnarray}$$

\(\lambda\)に関する幾つかの式を先に計算しておく

$$\begin{eqnarray} \lambda_{1,2}&=&-\gamma\pm\sqrt{\gamma^2-\omega_0^2} \\&=&-\gamma\pm\xi \\\omega&=&\sqrt{\left|\gamma^2-\omega_0^2\right|} \\\xi&=&\omega i\;\ldots\;\left(\gamma\lt\omega_0 の時\right) \\\omega^2&=&-\left(\gamma^2-\omega_0^2\right) \\&=&\omega_0^2-\gamma^2 \\\lambda_1 + \lambda_2&=&\left(-\gamma+\xi\right)+\left(-\gamma-\xi\right) \\&=&-2\gamma \\\lambda_1 - \lambda_2&=&\left(-\gamma+\xi\right)-\left(-\gamma-\xi\right) \\&=&2\xi \\ \\\lambda_1 \lambda_2&=&\left(-\gamma+\xi\right)\left(-\gamma-\xi\right) \\&=&(-\gamma)^2-\xi^2 \\&=&\gamma^2-\xi^2 \\ \\\lambda_1^2&=&\left(-\gamma+\xi\right)^2 \\&=&(-\gamma)^2+2(-\gamma)\xi+\xi^2 \\&=&\gamma^2-2\gamma\xi+\xi^2 \\&=&\left(\gamma-\xi\right)^2 \\ \\\lambda_2^2&=&\left(-\gamma-\xi\right)^2 \\&=&(-\gamma)^2-2(-\gamma)\xi+\xi^2 \\&=&\gamma^2+2\gamma\xi+\xi^2 \\&=&\left(\gamma+\xi\right)^2 \\ \\\lambda_1^2+\lambda_2^2&=&(\gamma^2-2\gamma\xi+\xi^2)+(\gamma^2+2\gamma\xi+\xi^2) \\&=&2(\gamma^2+\xi^2) \\ \\\lambda_2^2-\lambda_1^2&=&(\gamma^2+2\gamma\xi+\xi^2)-(\gamma^2-2\gamma\xi+\xi^2) \\&=&4\gamma\xi \\ \\ \\ \\\left(\lambda_1^2 + \omega_f^2\right)\left(\lambda_2^2 + \omega_f^2\right) &=&\lambda_1^2\lambda_2^2+\left(\lambda_1^2+\lambda_2^2\right)\omega_f^2+\omega_f^4 \\&=&\left(\gamma-\xi\right)^2\left(\gamma+\xi\right)^2+2(\gamma^2+\xi^2)\omega_f^2+\omega_f^4 \\&=&\left\{\left(\gamma-\xi\right)\left(\gamma+\xi\right)\right\}^2+2\gamma^2\omega_f^2+2\xi^2\omega_f^2+\omega_f^4 \\&=&\left(\gamma^2-\xi^2\right)^2+2\gamma^2\omega_f^2+2(\gamma^2-\omega_0^2)\omega_f^2+\omega_f^4 \\&=&\left(\omega_0^2\right)^2+2\gamma^2\omega_f^2+2\gamma^2\omega_f^2-2\omega_0^2\omega_f^2+\omega_f^4 \\&=&\omega_0^4+4\gamma^2\omega_f^2-2\omega_0^2\omega_f^2+\omega_f^4 \\&=&\left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2 \end{eqnarray}$$

逆ラプラス変換 第1項

\(\gamma \lt \omega_0(\xiが虚数の場合)\) $$\begin{eqnarray} \\&&C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \\&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t} \;\ldots\;\mathfrak{L}^{-1}\left[ \frac{1}{s+a} \right]=e^{-at} \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{\lambda_1 t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{\lambda_2 t} \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{\left(-\gamma+\xi\right) t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{\left(-\gamma-\xi\right) t} \\&&\;\ldots\;\lambda_{1,2} =-\frac{c}{2m}\pm\sqrt{\left(\frac{c}{2m}\right)^2-\left(\sqrt{\frac{k}{m}}\right)^2} =-\gamma\pm\sqrt{\gamma^2-\omega_0^2} =-\gamma\pm\xi \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{-\gamma t}e^{\xi t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{-\gamma t}e^{-\xi t} \;\ldots\;a^{A+B}=a^Aa^B \\&=& e^{-\gamma t}\left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)e^{\omega i t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)e^{-\omega i t} \right\} \\&&\;\ldots\;\gamma \lt \omega_0(\xiが虚数の場合),\;\xi=\sqrt{\gamma^2-\omega_0^2}=\sqrt{\left|\gamma^2-\omega_0^2\right|}\;i=\omega i \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right\} \right] \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}-i\sin{\left(\omega t\right)}\right\} \right] \\&&\;\ldots\;\cos{\left(-\omega t\right)}=\cos{\left(\omega t\right)},\;\sin{\left(-\omega t\right)}=-\sin{\left(\omega t\right)} \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\cos{\left(\omega t\right)} +\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)i\sin{\left(\omega t\right)} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\cos{\left(\omega t\right)} -\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)i\sin{\left(\omega t\right)} \right] \\&=& e^{-\gamma t}\left[ \left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right) +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right) \right\}\cos{\left(\omega t\right)} +\left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right) -\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right) \right\}i\sin{\left(\omega t\right)} \right] \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega i }i\sin{\left(\omega t\right)} \right\} \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega }\sin{\left(\omega t\right)} \right\} \;\ldots\;\frac{i}{i}=1 \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0}{\omega }\sin{\left(\omega t\right)} +\frac{\gamma x_0}{\omega }\sin{\left(\omega t\right)} \right\} \\&=& x_0e^{-\gamma t}\left\{ \cos{\left(\omega t\right)} +\frac{\gamma }{\omega }\sin{\left(\omega t\right)} \right\} +v_0e^{-\gamma t}\left\{ \frac{1}{\omega }\sin{\left(\omega t\right)} \right\} \;\ldots\;初期位置x_0による項と初期速度v_0による項 \end{eqnarray}$$

逆ラプラス変換 第2項

\(\gamma \lt \omega_0(\xiが虚数の場合)\) $$\begin{eqnarray} &&\mathfrak{L}^{-1}\left[ \frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \frac{\omega_f(\lambda_2^2 + \omega_f^2)}{s-\lambda_1} +\frac{-\omega_f(\lambda_1^2 + \omega_f^2)}{s-\lambda_2} \right\} \right] \\&=&\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \omega_f(\lambda_2^2 + \omega_f^2)\mathfrak{L}^{-1}\left[ \frac{1}{s-\lambda_1} \right] -\omega_f(\lambda_1^2 + \omega_f^2)\mathfrak{L}^{-1}\left[ \frac{1}{s-\lambda_2} \right] \right\} \\&=&\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)e^{\lambda_1 t} -\left(\omega_f\lambda_1^2 + \omega_f^3\right)e^{\lambda_2 t} \right\} \\&=&\frac{F}{m}\frac{1}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)e^{(-\gamma+\omega i) t} -\left(\omega_f\lambda_1^2 + \omega_f^3\right)e^{(-\gamma-\omega i) t} \right\} \\&=&\frac{F}{m}\frac{1}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)e^{-\gamma t}e^{\omega i t} -\left(\omega_f\lambda_1^2 + \omega_f^3\right)e^{-\gamma t}e^{-\omega i t} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)e^{\omega i t} -\left(\omega_f\lambda_1^2 + \omega_f^3\right)e^{-\omega i t} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)\left(\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right) -\left(\omega_f\lambda_1^2 + \omega_f^3\right)\left(\cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right) \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)\left(\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right) -\left(\omega_f\lambda_1^2 + \omega_f^3\right)\left(\cos{\left(\omega t\right)}-i\sin{\left(\omega t\right)}\right) \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \left(\omega_f\lambda_2^2 + \omega_f^3\right)\cos{\left(\omega t\right)} +\left(\omega_f\lambda_2^2 + \omega_f^3\right)i\sin{\left(\omega t\right)} -\left(\omega_f\lambda_1^2 + \omega_f^3\right)\cos{\left(\omega t\right)} +\left(\omega_f\lambda_1^2 + \omega_f^3\right)i\sin{\left(\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left[ \left\{\left(\omega_f\lambda_2^2 + \omega_f^3\right)-\left(\omega_f\lambda_1^2 + \omega_f^3\right)\right\}\cos{\left(\omega t\right)} +\left\{\left(\omega_f\lambda_2^2 + \omega_f^3\right)+\left(\omega_f\lambda_1^2 + \omega_f^3\right)\right\}i\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left[ \omega_f\left\{\left(\lambda_2^2 + \omega_f^2\right)-\left(\lambda_1^2 + \omega_f^2\right)\right\}\cos{\left(\omega t\right)} +\omega_f\left\{\left(\lambda_2^2 + \omega_f^2\right)+\left(\lambda_1^2 + \omega_f^2\right)\right\}i\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \omega_f\left(\lambda_2^2 - \lambda_1^2\right)\cos{\left(\omega t\right)} +\omega_f\left(\lambda_1^2 + \lambda_2^2 + 2\omega_f^2\right)i\sin{\left(\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left[ 4\gamma\omega_f\cos{\left(\omega t\right)} +\omega_f\left\{ 2\left(\gamma^2+\xi^2\right) + 2\omega_f^2 \right\}i\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2 \xi \left(2\gamma\omega_f\right)+\left(\omega_0^2-\omega_f^2\right)^2} \left[ \omega_f\left(4\gamma\xi\right)\cos{\left(\omega t\right)} +2\omega_f i\left\{ \left(\gamma^2+\xi^2\right) + \omega_f^2 \right\}\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2} \left[ \frac{4\gamma\omega_f\xi}{2\xi}\cos{\left(\omega t\right)} +\frac{2\omega_f i}{2\xi} \left\{ \gamma^2 \left(\gamma^2-\omega_0^2\right) + \omega_f^2 \right\}\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ 2\gamma\omega_f\cos{\left(\omega t\right)} +\frac{\omega_f i}{\xi}\left(2\gamma^2-\omega_0^2 + \omega_f^2\right)\sin{\left(\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2} \left[ 2\gamma\omega_f\cos{\left(\omega t\right)} +\frac{\omega_f i}{\omega i}\left\{2\gamma^2-\left(\omega_0 ^2 - \omega_f^2\right)\right\}\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2} \left[ 2\gamma\omega_f\cos{\left(\omega t\right)} +\frac{\omega_f}{\omega}\left\{ 2\gamma^2-\left(\omega_0 ^2 - \omega_f^2\right) \right\}\sin{\left(\omega t\right)} \right] \end{eqnarray}$$

逆ラプラス変換 第3項

$$\begin{eqnarray} &&\mathfrak{L}^{-1}\left[\frac{F}{m} \frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \frac{ \omega_f\left(\lambda_1 + \lambda_2\right)\left(\lambda_1 - \lambda_2\right)s +\omega_f\left(\lambda_1\lambda_2 - \omega_f^2\right)\left(\lambda_1 - \lambda_2\right) } {s^2+\omega_f^2} \right\} \right] \\&=&\frac{F}{m} \frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \mathfrak{L}^{-1}\left[ \frac{\omega_f\left(\lambda_1 + \lambda_2\right)\left(\lambda_1 - \lambda_2\right)s}{s^2+\omega_f^2} +\frac{\omega_f\left(\lambda_1\lambda_2 - \omega_f^2\right)\left(\lambda_1 - \lambda_2\right)}{s^2+\omega_f^2} \right] \\&=&\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \omega_f\left(\lambda_1 + \lambda_2\right)\left(\lambda_1 - \lambda_2\right)\mathfrak{L}^{-1}\left[ \frac{s}{s^2+\omega_f^2} \right] +\left(\lambda_1\lambda_2 - \omega_f^2\right)\left(\lambda_1 - \lambda_2\right)\mathfrak{L}^{-1}\left[ \frac{\omega_f}{s^2+\omega_f^2} \right] \right\} \\&=&\frac{F}{m}\frac{1}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \omega_f\left(\lambda_1 + \lambda_2\right)\mathfrak{L}^{-1}\left[ \frac{s}{s^2+\omega_f^2} \right] +\left(\lambda_1\lambda_2 - \omega_f^2\right)\mathfrak{L}^{-1}\left[ \frac{\omega_f}{s^2+\omega_f^2} \right] \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ \omega_f(–2\gamma)\cos{\left(\omega_f t\right)} +\left\{\left(\omega_0^2\right)-\omega_f^2\right\}\sin{\left(\omega_f t\right)} \right\} \\&&\;\ldots\;\lambda_1 + \lambda_2 =-2\gamma \\&&\;\ldots\;\lambda_1 - \lambda_2 =2\xi =2\omega i \;\left(\omega=\sqrt{\left|\gamma^2-\omega_0^2\right|},\;\gamma\lt\omega_0\right) \\&&\;\ldots\;\lambda_1\lambda_2 =\gamma^2-\xi^2 =\gamma^2-(\omega i)^2 =\gamma^2+\omega^2 =\omega_0^2 \\&=&\frac{F}{m}\frac{1}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2}\left\{ -2\gamma\omega_f\cos{\left(\omega_f t\right)} +\left(\omega_0^2-\omega_f^2\right)\sin{\left(\omega_f t\right)} \right\} \end{eqnarray}$$

逆ラプラス変換 第1,2,3項

$$\begin{eqnarray} x(t)&=& \color{red}{ x_0e^{-\gamma t}\left\{ \cos{\left(\omega t\right)} +\frac{\gamma }{\omega }\sin{\left(\omega t\right)} \right\} }&\ldots初期位置による振動\;振幅にe^{-\gamma t}があるのでt\rightarrow\inftyで消える \\&+& \color{blue}{ v_0e^{-\gamma t}\left\{ \frac{1}{\omega }\sin{\left(\omega t\right)} \right\} }&\ldots初期速度による振動\;振幅にe^{-\gamma t}があるのでt\rightarrow\inftyで消える \\&+& \color{green}{ \frac{F}{m}\frac{e^{-\gamma t}}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2} \left\{ 2\gamma\omega_f\cos{\left(\omega t\right)} +\frac{\omega_f}{\omega}\left(2\gamma^2-(\omega_0 ^2 - \omega_f^2)\right)\sin{\left(\omega t\right)} \right\} }&\ldots過渡応答による振動\;振幅にe^{-\gamma t}があるのでt\rightarrow\inftyで消える \\&+& \color{magenta}{ \frac{F}{m}\frac{1}{\left(2\gamma\omega_f\right)^2+\left(\omega_0^2-\omega_f^2\right)^2}\left\{ -2\gamma\omega_f\cos{\left(\omega_f t\right)} +\left(\omega_0^2-\omega_f^2\right)\sin{\left(\omega_f t\right)} \right\} }&\ldots強制振動による振動\;振幅にe^{-\gamma t}がないのでt\rightarrow\inftyでも残る \end{eqnarray}$$

0 件のコメント:

コメントを投稿