間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

1/(x^2+px-1)の不定積分

1/(x^2+px-1)の不定積分

$$\begin{eqnarray} \int \frac{1}{x^2+px-1}\mathrm{d}x\;\ldots\;pは実数 \end{eqnarray}$$

1/(x^2+px-1)の部分分数分解

$$\begin{eqnarray} \frac{1}{x^2+px-1}&=&\frac{1}{x^2+\color{red}{2}\color{black}{}\frac{p}{\color{red}{2}\color{black}{}}x \color{blue}{+\left(\frac{p}{2}\right)^2-\left(\frac{p}{2}\right)^2}\color{black}{}-1} \\&=&\frac{1}{\left(x+\frac{p}{2}\right)^2-\left(\frac{p^2}{4}+1\right)} \\&=&\frac{1}{\left(x+\frac{p}{2}\right)^2-\left(\sqrt{\frac{p^2}{4}+1}\right)^2} \;\ldots\;\frac{p^2}{4}+1\gt0なので問題なく根号をつけられる \\&=&\frac{1}{\left(x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right)\left(x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right)} \\&=&\frac{1}{\lambda_1\lambda_2} \;\ldots\;\lambda_{1,2}=x+\frac{p}{2}\pm\sqrt{\frac{p^2}{4}+1} \\&=&\frac{C_1}{\lambda_1}+\frac{C_2}{\lambda_2}=\frac{C_1\lambda_2+C_2\lambda_1}{\lambda_1\lambda_2} \;\ldots\;部分分数分解 \\&=&\frac{\frac{-1}{\sqrt{p^2+4}}}{\lambda_1} +\frac{\frac{1}{\sqrt{p^2+4}}}{\lambda_2} \\&&\;\ldots\;\small{C_1\lambda_2+C_2\lambda_1=1} \\&&\;\ldots\;\small{C_1 x+C_1\left(\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right)+C_2x+C_2\left(\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right)=1} \\&&\;\ldots\;\left\{ \begin{array} \\(C_1+C_2)x=0 \\C_1\left(\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right)+C_2\left(\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right)=1 \end{array} \right.\;\ldots\;係数比較 \\&&\;\ldots\;C_1=-C_2\;\ldots\;一つ目の式より \\&&\;\ldots\;C_1\left(\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right)-C_1\left(\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right)=1 \\&&\;\ldots\;C_1\left\{\left(\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right)-\left(\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right)\right\}=1 \\&&\;\ldots\;-2 C_1 \sqrt{\frac{p^2}{4}+1}=1 \\&&\;\ldots\;-C_1 \sqrt{p^2+4}=1 \\&&\;\ldots\;C_1 =\frac{-1}{\sqrt{p^2+4}} \\&&\;\ldots\;C_2 =-C_1=\frac{1}{\sqrt{p^2+4}} \\&=&\frac{1}{\sqrt{p^2+4}}\left(\frac{-1}{\lambda_1}+\frac{1}{\lambda_2}\right) \\&=&\frac{1}{\sqrt{p^2+4}}\left(\frac{-1}{x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}}+\frac{1}{x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}}\right) \end{eqnarray}$$

1/(x^2+px-1)の不定積分 計算

$$\begin{eqnarray} \int \frac{1}{x^2+px-1}\mathrm{d}x &=&\int \frac{1}{\sqrt{p^2+4}}\left(\frac{-1}{x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}} +\frac{1}{x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}}\right)\mathrm{d}x \\&=&\frac{1}{\sqrt{p^2+4}}\left( \int \frac{-1}{x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}} \mathrm{d}x +\int \frac{1}{x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}} \mathrm{d}x \right) \\&=&\frac{1}{\sqrt{p^2+4}}\left( \int \frac{-1}{u} \mathrm{d}u +\int \frac{1}{v} \mathrm{d}v \right) \\&&\;\ldots\;u=x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1},\;\frac{\mathrm{d}u}{\mathrm{d}x}=1,\;\mathrm{d}x=\mathrm{d}u \\&&\;\ldots\;v=x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1},\;\frac{\mathrm{d}v}{\mathrm{d}x}=1,\;\mathrm{d}x=\mathrm{d}v \\&=&\frac{1}{\sqrt{p^2+4}}\left( -\log{\left|u\right|} +\log{\left|v\right|} \right) \\&&\;\ldots\;\int \frac{1}{x} \mathrm{d}x=\log{\left|x\right|}+C\;\;(C:積分定数) \\&=&\frac{1}{\sqrt{p^2+4}}\left( -\log{\left|x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right|} +\log{\left|x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right|} \right) \\&=&\frac{1}{\sqrt{p^2+4}}\log{\frac{ \left|x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right| }{ \left|x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right| }} + C\;\;(C:積分定数) \\&&\;\ldots\;\log{A}-\log{B}=\log{\frac{A}{B}} \end{eqnarray}$$

\(p=0\)の場合

$$\begin{eqnarray} \left.\int \frac{1}{x^2+px-1}\mathrm{d}x\right|_{p=0} &=&\left.\frac{1}{\sqrt{p^2+4}}\log{\frac{ \left|x+\frac{p}{2}-\sqrt{\frac{p^2}{4}+1}\right| }{ \left|x+\frac{p}{2}+\sqrt{\frac{p^2}{4}+1}\right| }}\right|_{p=0} \\&=&\frac{1}{\sqrt{0^2+4}}\log{\frac{ \left|x+\frac{0}{2}-\sqrt{\frac{0^2}{4}+1}\right| }{ \left|x+\frac{0}{2}+\sqrt{\frac{0^2}{4}+1}\right| }} \\&=&\frac{1}{2}\log{\frac{ \left|x-1\right| }{ \left|x+1\right| }} + C\;\;(C:積分定数) \end{eqnarray}$$

0 件のコメント:

コメントを投稿