間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

多角形D上の点から任意の点への距離の平均値 (グリーンの定理を用いて面積分を周回積分にして求める)

グリーンの定理(Green's theorem)

閉曲線\(C\)で囲まれた領域\(D\)を考える場合,\(C^1\)級凾数\(P(x, y), Q(x, y)\)について以下が成り立つ。 $$ \begin{eqnarray} \iint_D \left(\frac{\partial Q(x, y)}{\partial x}-\frac{\partial P(x, y)}{\partial y}\right)\mathrm{d}x\mathrm{d}y &=& \oint_C P(x, y)\mathrm{d}x+Q(x,y)\mathrm{d}y \end{eqnarray} $$

面積分を周回積分へ変形し,区間毎の積分に展開する

点\((x,y)\)から点\((p,q)\)までの距離は $$ \begin{eqnarray} r(x, y; p, q)&=&\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} \end{eqnarray} $$ であり,多角形D上の点\(x,y\)から任意の点\(p,q\)への距離の平均値\(\bar{r}\)は, $$ \begin{eqnarray} \bar{r}&=&\iint_D \rho(x,y)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x\mathrm{d}y \\&=&\iint_D \frac{1}{A}\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x\mathrm{d}y \;\cdots\;密度は均一と仮定: \rho(x,y)=\frac{1}{A}\;(定数, A:Dの面積) \\&=&\frac{1}{A}\iint_D \sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x\mathrm{d}y \;\cdots\;\int_XcA(x)\mathrm{d}x=c\int_XA(x)\mathrm{d}x \end{eqnarray} $$ である.

これをグリーンの定理の式で満たすために例えば $$ \begin{eqnarray} Q(x, y)&=&\int \sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x \\P(x, y)&=&0 \end{eqnarray} $$ とおく.これは $$ \begin{eqnarray} \frac{\partial Q(x, y)}{\partial x}-\frac{\partial P(x, y)}{\partial y}&=&\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}-0 \\&=&\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} \end{eqnarray} $$ となり,グリーンの定理の面積分側の被積分凾数を表現できている.
この\(P,Q\)を用いて周回積分側の 被積分凾数を求めると以下のようになる. $$ \begin{eqnarray} \bar{r}&=&\frac{1}{A}\iint_D \sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x\mathrm{d}y \\&=&\frac{1}{A}\iint_D \left(\frac{\partial Q(x, y)}{\partial x}-\frac{\partial P(x, y)}{\partial y}\right)\mathrm{d}x\mathrm{d}y \\&=&\frac{1}{A}\oint_C P(x, y)\mathrm{d}x+Q(x,y)\mathrm{d}y \\&=&\frac{1}{A}\oint_C 0\mathrm{d}x+\left(\int_D \sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x\right)\mathrm{d}y \\&=&\frac{1}{A}\oint_C \left(\int \sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\;\mathrm{d}x\right)\mathrm{d}y \\&=&\frac{1}{A}\oint_C \left(\int \sqrt{u^2+v^2}\;\mathrm{d}u\right)\mathrm{d}y \;\cdots\;u=x-p, v=y-q \\&=&\frac{1}{A}\oint_C \frac{1}{2}\left\{u\sqrt{u^2+v^2}+v^2\ln{\left|u+\sqrt{u^2+v^2}\right|}\right\}\mathrm{d}y \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/07/x2a2.html}{\int \sqrt{x^2+a^2}\;\mathrm{d}x=\frac{1}{2}\left\{x\sqrt{x^2+a^2}+a^2\ln{\left|x+\sqrt{x^2+a^2}\right|}\right\} + 積分定数} \\&=&\frac{1}{2A}\oint_C \left\{\left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} +\left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|}\right\}\mathrm{d}y \end{eqnarray} $$ ここで周回積分を多角形として考える.多角形の各頂点の列を以下のように与えるとする. $$ \begin{eqnarray} (x_0, y_0), (x_1, y_1),(x_2, y_2), \cdots, (x_n, y_n)=(x_0, y_0) \end{eqnarray} $$ 周回積分を多角形の区間ごとに分割し,区間毎の積分の和として以下のようになる. $$ \begin{eqnarray} \bar{r}&=&\frac{1}{2A}\oint_C \left\{\left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} +\left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|}\right\}\mathrm{d}y \\&=&\frac{1}{2A} \sum_{k=1}^n \int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left\{\left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} +\left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|}\right\}\mathrm{d}y \\&=&\frac{1}{2A} \sum_{k=1}^n\left\{ \int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} \;\mathrm{d}y +\int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|} \;\mathrm{d}y \right\} \\&=&\frac{1}{2A} \sum_{k=1}^n \left\{I_{1k}+ I_{2k}\right\} \\&&\;\cdots\;I_{1k}=\int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} \;\mathrm{d}y \\&&\;\cdots\;I_{2k}=\int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|} \;\mathrm{d}y \end{eqnarray} $$

多角形の頂点間線分(辺)に重なる直線の式を求める

多角形の各頂点において今の頂点\((x_k, y_k)\)とその前の頂点\((x_{k-1}, y_{k-1})\)とを通る直線の式は以下のように求められる. $$ \begin{eqnarray} y-y_{k-1}&=&\frac{y_k-y_{k-1}}{x_k-x_{k-1}}\left(x-x_{k-1}\right) \;\cdots\;傾き\thetaの直線における原点を,点(p,q)へ移動した式と同じ.(y-q)=\theta(x-p) \\x-x_{k-1}&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}\left(y-y_{k-1}\right) \end{eqnarray} $$ $$ \begin{eqnarray} \\x-x_{k-1}&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}\left(y-y_{k-1}\right) \\x&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}\left(y-y_{k-1}\right)+x_{k-1} \\x&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}y+\frac{x_k-x_{k-1}}{y_k-y_{k-1}}(-y_{k-1})+x_{k-1} \\&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}y+\frac{\left(x_k-x_{k-1}\right)(-y_{k-1})+x_{k-1}\left(y_k-y_{k-1}\right)}{y_k-y_{k-1}} \\&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}y +\frac{ -x_ky_{k-1} +x_{k-1}y_{k-1} +x_{k-1}y_k -x_{k-1}y_{k-1} }{y_k-y_{k-1}} \\&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}y+\frac{-x_ky_{k-1}+x_{k-1}y_k}{y_k-y_{k-1}} \\&=&\frac{x_k-x_{k-1}}{y_k-y_{k-1}}y+\frac{x_{k-1}y_k-x_ky_{k-1}}{y_k-y_{k-1}} \\&=&\epsilon_k y+\zeta_k \end{eqnarray} $$

区間毎の積分より距離の平均値\(\bar{r}\)を求める 第一項\(I_{1k}\)

$$ \begin{eqnarray} I_{1k}&=&\int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} \;\mathrm{d}y \\&=&I_{1k}(y_k)-I_{1k}(y_{k-1}) \\I_{1k}(y)&=&\int \left(\left(\epsilon_k y+\zeta_k\right)-p\right) \sqrt{\left(\left(\epsilon_k y+\zeta_k\right)-p\right)^2+\left(y-q\right)^2} \;\mathrm{d}y \;\cdots\;x=\epsilon_k y+\zeta_k \\&=&\int \left(\left(\epsilon_k y+\zeta_k\right)-p\right) \sqrt{\left(\left(\epsilon_k y+\zeta_k\right)^2-2p\left(\epsilon_k y+\zeta_k\right)+p^2\right)+\left(y^2-2qy+q^2\right)} \;\mathrm{d}y \\&=&\int \left(\epsilon_k y+\zeta_k-p\right) \sqrt{\left(\epsilon_k^2 y^2+2\epsilon_k\zeta_k y+\zeta_k^2\right)-2p\epsilon_k y-2p\zeta_k+p^2+y^2-2qy+q^2} \;\mathrm{d}y \\&=&\int \left(\epsilon_k y+\zeta_k-p\right) \sqrt{\epsilon_k^2 y^2+2\epsilon_k\zeta_k y+\zeta_k^2-2p\epsilon_k y-2p\zeta_k+p^2+y^2-2qy+q^2} \;\mathrm{d}y \\&=&\int \left(\epsilon_k y+\zeta_k-p\right) \sqrt{\left(\epsilon_k^2 +1 \right)y^2+2\left\{\epsilon_k\left(\zeta_k-p\right)-q\right\}y +\left(\zeta_k-p\right)^2+q^2} \;\mathrm{d}y \\&=&\int \left(\epsilon_k y+\zeta_k-p\right)\sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y \;\cdots\;\alpha_k=\epsilon_k^2 +1,\;\beta_k=2\left\{\epsilon_k\left(\zeta_k-p\right)-q\right\},\;\gamma_k=\left(\zeta_k-p\right)^2+q^2 \\&=& \int \epsilon_k y\sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y + \int \left(\zeta_k-p\right) \sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y \\&=& \epsilon_k \int y\sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y + \left(\zeta_k-p\right) \int \sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y \\&=& \epsilon_k \int y\sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y + \left(\zeta_k-p\right) \int \sqrt{\alpha_k y^2+\beta_k y +\gamma_k} \;\mathrm{d}y \\&=& \epsilon_k \left\{ \frac{1}{3\alpha_k}\left(\alpha_k y^2+\beta_k y+\gamma_k \right)^{\frac{3}{2}} -\frac{\beta_k \left(2\alpha_k y+\beta_k \right)}{8\alpha_k^{2}}\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} +\frac{\beta_k \left(\beta_k^2-4\alpha_k\gamma_k\right)}{16\alpha_k^{\frac{5}{2}}}\ln{ \left|\left(2\alpha_k y+\beta_k \right)+2\sqrt{\alpha_k\left(\alpha_k y^2+\beta_k y+\gamma_k\right)}\right| } +C_0 \right\} \\&&+ \left(\zeta_k-p\right) \left\{ \frac{2\alpha_k y+\beta_k}{4\alpha_k}\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} +\frac{4\alpha_k \gamma_k-\beta_k^2}{8\alpha_k^{\frac{3}{2}}}\ln{ \left|\left(2\alpha_k y+\beta_k\right)+2\sqrt{\alpha_k\left(\alpha_k y^2+\beta_k y+\gamma_k\right)}\right| } +C_1 \right\} \\&&\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/07/xa-x2b-x-c.html}{\int x\sqrt{a x^2+b x +c} \;\mathrm{d}x= \frac{1}{3a}\left(ax^2+bx+c\right)^{\frac{3}{2}} -\frac{b\left(2ax+b\right)}{8a^{2}}\sqrt{\left(ax^2+bx+c\right)} +\frac{b\left(b^2-4ac\right)}{16a^{\frac{5}{2}}}\ln{ \left|\left(2ax+b\right)+2\sqrt{a\left(ax^2+bx+c\right)}\right| } +C_0\;(C_0:積分定数)} \\&&\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/07/a-x2b-x-c.html}{\int \sqrt{a x^2+b x +c} \;\mathrm{d}x= \frac{2ax+b}{4a}\sqrt{\left(ax^2+bx+c\right)} +\frac{4ac-b^2}{8a^{\frac{3}{2}}}\ln{ \left|\left(2ax+b\right)+2\sqrt{a\left(ax^2+bx+c\right)}\right| } +C_1\;(C_1:積分定数)} \\&=& \epsilon_k \left\{ \frac{1}{3\alpha_k}\left(\alpha_k y^2+\beta_k y+\gamma_k \right)^{\frac{3}{2}} -\frac{\beta_k \left(2\alpha_k y+\beta_k \right)}{8\alpha_k^{2}}\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} +\frac{\beta_k \left(\beta_k^2-4\alpha_k\gamma_k\right)}{16\alpha_k^{\frac{5}{2}}}\ln{ \left|\left(2\alpha_k y+\beta_k \right)+2\sqrt{\alpha_k\left(\alpha_k y^2+\beta_k y+\gamma_k\right)}\right| } \right\} \\&&+ \left(\zeta_k-p\right) \left\{ \frac{2\alpha_k y+\beta_k}{4\alpha_k}\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} +\frac{4\alpha_k \gamma_k-\beta_k^2}{8\alpha_k^{\frac{3}{2}}}\ln{ \left|\left(2\alpha_k y+\beta_k\right)+2\sqrt{\alpha_k\left(\alpha_k y^2+\beta_k y+\gamma_k\right)}\right| } \right\} +\epsilon_k C_0 +\left(\zeta_k-p\right) C_1 \\&=& \epsilon_k \left\{ \frac{1}{3\alpha_k}\left(\alpha_k y^2+\beta_k y+\gamma_k \right)^{\frac{3}{2}} -\frac{\beta_k \left(2\alpha_k y+\beta_k \right)}{8\alpha_k^{2}}\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} +\frac{\beta_k \left(\beta_k^2-4\alpha_k\gamma_k\right)}{16\alpha_k^{\frac{5}{2}}}\ln{ \left|\left(2\alpha_k y+\beta_k \right)+2\sqrt{\alpha_k\left(\alpha_k y^2+\beta_k y+\gamma_k\right)}\right| } \right\} \\&&+ \left(\zeta_k-p\right) \left\{ \frac{2\alpha_k y+\beta_k}{4\alpha_k}\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} +\frac{4\alpha_k \gamma_k-\beta_k^2}{8\alpha_k^{\frac{3}{2}}}\ln{ \left|\left(2\alpha_k y+\beta_k\right)+2\sqrt{\alpha_k\left(\alpha_k y^2+\beta_k y+\gamma_k\right)}\right| } \right\} + C \;\cdots\;C=\epsilon_k C_0+\left(\zeta_k-p\right) C_1\;(C:積分定数) \end{eqnarray} $$

区間毎の積分より距離の平均値\(\bar{r}\)を求める 第二項\(I_{2k}\)

$$ \begin{eqnarray} I_{2k}&=&\int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|} \;\mathrm{d}y \\&=&\int^{y_k}_{y_{k-1}} \left(y-q\right)^2\ln{\left|\left(\left(\epsilon_k y+\zeta_k\right)-p\right)+\sqrt{\left(\left(\epsilon_k y+\zeta_k\right)-p\right)^2+\left(y-q\right)^2}\right|} \;\mathrm{d}y \\&=&\int^{y_k}_{y_{k-1}} \left(y-q\right)^2 \ln{\left| \epsilon_k y+\zeta_k-p +\sqrt{ \left( \left( \epsilon_k y+\zeta_k \right)^2 -2p\left( \epsilon_k y+\zeta_k \right)+p^2 \right) +\left( y^2-2qy-q^2 \right) } \right|} \;\mathrm{d}y \\&=&\int^{y_k}_{y_{k-1}} \left(y-q\right)^2 \ln{\left| \epsilon_k y+\zeta_k-p +\sqrt{ \left( \epsilon_k^2 y^2 +2\epsilon_k\zeta_k y +\zeta_k^2 \right) -2p\epsilon_k y -2p\zeta_k +p^2 +y^2-2qy-q^2 } \right|} \;\mathrm{d}y \\&=&\int^{y_k}_{y_{k-1}} \left(y-q\right)^2 \ln{\left| \epsilon_k y+\zeta_k-p +\sqrt{ \epsilon_k^2 y^2 +y^2 +2\epsilon_k\zeta_k y -2p\epsilon_k y -2qy +\zeta_k^2 -2p\zeta_k +p^2 -q^2 } \right|} \;\mathrm{d}y \\&=&\int^{y_k}_{y_{k-1}} \left(y-q\right)^2 \ln{\left| \epsilon_k y+\zeta_k-p +\sqrt{ \left(\epsilon_k^2+1\right) y^2 +2\left\{\epsilon_k\left(\zeta_k-p\right)-q\right\} y +\left(\zeta_k-p\right)^2 -q^2 } \right|} \;\mathrm{d}y \\&=&\int^{y_k}_{y_{k-1}} \left(y-q\right)^2 \ln{\left| \epsilon_k y+\zeta_k-p +\sqrt{\alpha_k y^2+\beta_k y+\gamma_k} \right|}\;\mathrm{d}y \;\cdots\;\alpha_k=\epsilon_k^2+1 ,\;\beta_k=2\left\{\epsilon_k \left(\zeta_k-p\right) -q\right\} ,\;\gamma_k=\left(\zeta_k-p\right)^2-q^2 \end{eqnarray} $$ →要:数値計算

区間毎の積分より距離の平均値\(\bar{r}\)を求める 第一項\(I_{1k}\)+第二項\(I_{2k}\)

$$ \begin{eqnarray} \bar{r}&=&\frac{1}{2A} \sum_{k=1}^n\left\{ \int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(x-p\right)\sqrt{\left(x-p\right)^2+\left(y-q\right)^2} \;\mathrm{d}y +\int^{(x_k, y_k)}_{(x_{k-1},y_{k-1})} \left(y-q\right)^2\ln{\left|\left(x-p\right)+\sqrt{\left(x-p\right)^2+\left(y-q\right)^2}\right|} \;\mathrm{d}y \right\} \\&=&\frac{1}{2A} \sum_{k=1}^n \left\{I_{1k} + I_{2k}\right\} \\&=&\frac{1}{2A} \sum_{k=1}^n \left\{I_{1k}(y_{k}) - I_{1k}(y_{k-1}) + I_{2k}\right\} \end{eqnarray} $$

0 件のコメント:

コメントを投稿