式展開
間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).
尤度凾数の期待値の平均情報量(連続)
尤度凾数の期待値の平均情報量(連続)
尤
度
凾
数
の
期
待
値
の
平
均
情
報
量
正
規
化
さ
れ
た
尤
度
凾
数
の
期
待
値
の
平
均
情
報
量
G
n
=
−
E
X
[
log
(
E
Θ
[
q
(
X
;
θ
)
]
)
]
⋯
尤
度
凾
数
の
期
待
値
の
平
均
情
報
量
=
−
E
X
[
log
(
E
Θ
[
q
(
X
;
θ
0
)
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
⋯
q
(
X
;
θ
)
=
q
(
X
;
θ
0
)
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
=
−
E
X
[
log
(
q
(
X
;
θ
0
)
E
Θ
[
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
⋯
E
[
c
X
]
=
c
E
[
X
]
=
−
E
X
[
log
(
q
(
X
;
θ
0
)
)
+
log
(
E
Θ
[
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
⋯
log
(
A
B
)
=
log
(
A
)
+
log
(
B
)
=
−
E
X
[
log
(
q
(
X
;
θ
0
)
)
]
−
E
X
[
log
(
E
Θ
[
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
⋯
E
[
X
+
Y
]
=
E
[
X
]
+
E
[
Y
]
=
L
(
θ
0
)
−
E
X
[
log
(
E
Θ
[
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
⋯
−
E
X
[
log
(
q
(
X
;
θ
0
)
)
]
=
L
(
θ
0
)
=
L
(
θ
0
)
+
G
n
(
0
)
⋯
G
n
(
0
)
=
−
E
X
[
log
(
E
Θ
[
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
:
正
規
化
さ
れ
た
尤
度
凾
数
の
期
待
値
の
平
均
情
報
量
G
n
(
0
)
=
−
E
X
[
log
(
E
Θ
[
exp
(
−
f
(
X
i
,
θ
0
,
θ
)
)
]
)
]
=
−
E
X
[
log
(
E
Θ
[
exp
(
−
log
q
(
X
i
;
θ
0
)
q
(
X
i
;
θ
)
)
]
)
]
=
−
E
X
[
log
(
E
Θ
[
exp
(
log
q
(
X
i
;
θ
)
q
(
X
i
;
θ
0
)
)
]
)
]
=
−
E
X
[
log
(
E
Θ
[
q
(
X
i
;
θ
)
q
(
X
i
;
θ
0
)
]
)
]
=
−
E
X
[
log
(
E
Θ
[
q
(
X
i
;
θ
)
]
q
(
X
i
;
θ
0
)
)
]
=
E
X
[
−
log
(
E
Θ
[
q
(
X
i
;
θ
)
]
q
(
X
i
;
θ
0
)
)
]
=
E
X
[
log
(
q
(
X
i
;
θ
0
)
E
Θ
[
q
(
X
i
;
θ
)
]
)
]
0 件のコメント:
コメントを投稿
次の投稿
前の投稿
ホーム
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿