間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

指数分布族モデル / 共役な事前分布 / 予測分布

指数分布族モデル

$$ \begin{eqnarray} q(x;\theta)&=&v(x)\exp(f(\theta) \cdot g(x))\\ \int_X q(x;\theta) \mathrm{d}x &=&\int_X v(x)\exp(f(\theta) \cdot g(x)) \mathrm{d}x\\ &=&1\;\cdots\;確率なのでこの条件を満たすようにv,f,gを用意する\\ \end{eqnarray} $$

共役な事前分布

$$ \begin{eqnarray} \pi(\theta;\phi)&=&\frac{1}{z(\phi)}\exp(f(\theta) \cdot \phi)\\ \int_X \pi(\theta;\phi) \mathrm{d}x&=&\int_X \frac{1}{z(\phi)}\exp(f(\theta) \cdot \phi)\mathrm{d}x\\ &=&1\;\cdots\;確率なのでこの条件を満たすようにz,f,\phiを用意する\\ z(\phi)&=&\int_\Theta \exp(f(\theta) \cdot \phi) \mathrm{d}\theta\;\cdots\;むしろzは上記条件を満たすために用意される\\ \end{eqnarray} $$

予測分布

$$ \begin{eqnarray} q(X_{n+1}|X^n) &=&\frac{1}{Z_n(\beta)} \int q(X_{n+1}|\theta)^{\beta} \;\prod_{i=1}^n \left\{q(X_i|\theta)^{\beta} \right\} \;\pi(\theta) \mathrm{d}\theta \\ &=&\frac{1}{Z_n(\beta)}\int_{\Theta}{ \pi(\theta) q(X_{n+1}|\theta)^\beta \displaystyle\prod_{i=1}^n{q(X_{i}|\theta)}^\beta \mathrm{d}\theta}\\ &=&\frac{1}{Z_n(\beta)}\int_{\Theta}{ \pi(\theta)\displaystyle\prod_{i=1}^{n+1}{q(X_{i}|\theta)^\beta }\mathrm{d}\theta} \;\dots\;\displaystyle\prod_{i=1}^{n+1}{q(X_{i}|\theta)^\beta}=q(X_{n+1}|\theta)^\beta\displaystyle\prod_{i=1}^n{q(X_{i}|\theta)^\beta}\\ &=&\frac{1}{Z_n(\beta)}Z_{n+1}(\beta)\;\dots\;Z_{n+1}(\beta)=\int_{\Theta}{\pi(\theta)\displaystyle\prod_{i=1}^{n+1}{q(X_{i}|\theta)^\beta}\mathrm{d}\theta}\\ &=&\frac{Z_{n+1}(\beta)}{Z_n(\beta)}\\ \end{eqnarray} $$

分配凾数

$$ \begin{eqnarray} Z_n(\beta)&=&\int_\Theta \pi(\theta;\phi) \prod_{i=1}^n q(X_i;\theta)^{\beta} \mathrm{d}\theta\\ &=&\int_\Theta \pi(\theta;\phi) \prod_{i=1}^n \left[ v(X_i)\exp(f(\theta) \cdot g(X_i)) \right]^\beta \mathrm{d}\theta \;\cdots\;q(X_i;\theta)=v(X_i)\exp(f(\theta) \cdot g(X_i))\\ &=&\int_\Theta \left[ \frac{1}{z(\phi)}\exp(f(\theta) \cdot \phi) \right] \prod_{i=1}^n \left[ v(X_i)\exp(f(\theta) \cdot g(X_i)) \right]^\beta \mathrm{d}\theta \;\cdots\;\pi(\theta;\phi)=\frac{1}{z(\phi)}\exp(f(\theta) \cdot \phi)\\ &=&\frac{1}{z(\phi)} \int_\Theta \exp(f(\theta) \cdot \phi) \prod_{i=1}^n \left[ v(X_i)\exp(f(\theta) \cdot g(X_i)) \right]^\beta \mathrm{d}\theta \;\cdots\;\pi(\theta;\phi)=\frac{1}{z(\phi)}\exp(f(\theta) \cdot \phi)\\ &=&\frac{1}{z(\phi)} \int_\Theta \exp(f(\theta) \cdot \phi) \prod_{i=1}^n \left[ v(X_i)^\beta\exp(f(\theta) \cdot g(X_i))^\beta \right] \mathrm{d}\theta \;\cdots\;(ab)^c=a^c b^c\\ &=&\frac{1}{z(\phi)} \int_\Theta \exp(f(\theta) \cdot \phi) \left[ \prod_{i=1}^n v(X_i)^\beta \right] \left[ \prod_{i=1}^n \exp(f(\theta) \cdot g(X_i))^\beta \right] \mathrm{d}\theta \;\cdots\;\prod_{i=1}^nAB=\prod_{i=1}^nA\prod_{i=1}^nB\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} \int_\Theta \exp(f(\theta) \cdot \phi) \left[ \prod_{i=1}^n \exp\left( \beta \left\{ f\left(\theta\right) \cdot g\left(X_i\right) \right\} \right) \right] \mathrm{d}\theta \;\cdots\;\exp(A)^B=\exp(AB)\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} \int_\Theta \exp(f(\theta) \cdot \phi) \left[ \prod_{i=1}^n \exp\left( f\left(\theta\right) \cdot \beta g\left(X_i\right) \right) \right] \mathrm{d}\theta \;\cdots\;c(A\cdot B)= A\cdot cB \;(c:定数)\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} \int_\Theta \exp\left(f(\theta) \cdot \phi + \sum_{i=1}^n f\left(\theta\right) \cdot \beta g\left(X_i\right) \right) \mathrm{d}\theta \;\cdots\;\exp(A)\exp(B)=\exp(A+B)\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} \int_\Theta \exp\left(f(\theta) \cdot \phi + f\left(\theta\right) \cdot \sum_{i=1}^n \beta g\left(X_i\right) \right) \mathrm{d}\theta \;\cdots\;A\cdot B+A\cdot C=A\cdot (B+C)\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} \int_\Theta \exp\left(f(\theta) \cdot \left\{\phi + \sum_{i=1}^n \beta g\left(X_i\right) \right\}\right) \mathrm{d}\theta \;\cdots\;A\cdot B+A\cdot C=A\cdot (B+C)\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} \int_\Theta \exp\left(f(\theta) \cdot \hat{\phi}_{\beta}\right) \mathrm{d}\theta \;\cdots\;\hat{\phi}_{\beta} = \phi + \sum_{i=1}^n \beta g\left(X_i\right)\\ &=&\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{1}{z(\phi)} z(\hat{\phi}_{\beta}) \;\cdots\;z(\hat{\phi}_{\beta})=\int_\Theta \exp(f(\theta) \cdot \hat{\phi}_{\beta}) \mathrm{d}\theta\\ &=& \left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{z(\hat{\phi}_{\beta})}{z(\phi)} \\ \end{eqnarray} $$

自由エネルギー

$$ \begin{eqnarray} F_n(\beta)&=&-\frac{1}{\beta}\log{Z_n(\beta)}\\ &=&-\frac{1}{\beta}\log\left(\left[\prod_{i=1}^n v(X_i)^\beta\right]\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ &=&-\frac{1}{\beta}\log\left(\left[\prod_{i=1}^n v(X_i)^\beta\right]\right) -\frac{1}{\beta}\log\left(\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ &=&-\frac{1}{\beta}\log\left(\left[v(X_1)^\beta v(X_2)^\beta \cdots v(X_n)^\beta\right]\right) -\frac{1}{\beta}\log\left(\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ &=&-\frac{1}{\beta}\log\left(\left[v(X_1)v(X_2)\cdots v(X_n)\right]^\beta\right) -\frac{1}{\beta}\log\left(\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ &=&-\frac{1}{\beta}\beta\log\left(\left[v(X_1)v(X_2)\cdots v(X_n)\right]\right) -\frac{1}{\beta}\log\left(\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ &=&-\log\left(\left[v(X_1)v(X_2)\cdots v(X_n)\right]\right) -\frac{1}{\beta}\log\left(\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ &=&-\sum_{i=1}^n \log{v(X_i)}-\frac{1}{\beta}\log\left(\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\right)\\ \end{eqnarray} $$

事後分布

$$ \begin{eqnarray} q(\theta;X^n)&=&\frac{1}{Z_n(\beta)}\pi(\theta;\phi)\prod_{i=1}^n q(X_i;\theta)^\beta\\ &=&\frac{1}{Z_n(\beta)}\left[\prod_{i=1}^n v(X_i)^\beta\right]\frac{1}{z(\phi)}\exp(f(\theta)\cdot \hat{\phi}_{\beta})\\ &=&\frac{1}{\left[\prod_{i=1}^n v(X_i)^\beta\right] \frac{z(\hat{\phi}_{\beta})}{z(\phi)} }\left[\prod_{i=1}^n v(X_i)^\beta\right]\frac{1}{z(\phi)}\exp(f(\theta)\cdot \hat{\phi}_{\beta}) \;\cdots\;Z_n(\beta)=\left[\prod_{i=1}^n v(X_i)^\beta\right]\frac{z(\hat{\phi}_{\beta})}{z(\phi)}\\ &=&\frac{1}{z(\hat{\phi}_{\beta})}\exp(f(\theta)\cdot \hat{\phi}_{\beta})\\ &=&\pi(\theta;\hat{\phi}_{\beta})\\ \end{eqnarray} $$

上記事後分布で予測分布を書き直す

$$ \begin{eqnarray} q(x;X^n) &=&\int_\Theta q(x;\theta)^{\beta}q(\theta;X^n)\mathrm{d}\theta\;\cdots\;X^nから\thetaを,\thetaからxの推測確率(分布)を求める\\ &=&\int_\Theta q(x;\theta)^{\beta}\pi(\theta;\hat{\phi}_{\beta})\mathrm{d}\theta\;\cdots\;\hat{\phi}_{\beta}から\thetaを,\thetaからxの推測確率(分布)を求める\\ &=&\int_\Theta q(x;\theta)^{\beta}\frac{1}{z(\hat{\phi}_{\beta})}\exp(f(\theta)\cdot \hat{\phi}_{\beta})\mathrm{d}\theta\\ &=&\int_\Theta \left(v(x)\exp(f(\theta) \cdot g(x))\right)^{\beta}\frac{1}{z(\hat{\phi}_{\beta})}\exp(f(\theta)\cdot \hat{\phi}_{\beta})\mathrm{d}\theta\\ &=&v(x)^{\beta}\frac{1}{z(\hat{\phi}_{\beta})}\int \exp(f(\theta) \cdot g(x))^{\beta}\exp(f(\theta)\cdot \hat{\phi}_{\beta})\mathrm{d}\theta\\ &=&v(x)^{\beta}\frac{1}{z(\hat{\phi}_{\beta})}\int \exp(f(\theta) \cdot {\beta}g(x))\exp(f(\theta)\cdot \hat{\phi}_{\beta})\mathrm{d}\theta\\ &=&v(x)^{\beta}\frac{1}{z(\hat{\phi}_{\beta})}\int \exp(f(\theta) \cdot (\hat{\phi}_{\beta}+{\beta}g(x)))\mathrm{d}\theta\\ &=&v(x)^{\beta}\frac{1}{z(\hat{\phi}_{\beta})} z(\hat{\phi}_{\beta}+{\beta}g(x))\\ &=&v(x)^{\beta}\frac{z(\hat{\phi}_{\beta}+{\beta}g(x))}{z(\hat{\phi}_{\beta})}\\ &=&v(x)^{\beta}\frac{z(\phi+{\beta}g(X_1)+\cdots+{\beta}g(X_n)+{\beta}g(x))}{z(\phi+{\beta}g(X_1)+\cdots+{\beta}g(X_n))}\\ \end{eqnarray} $$

0 件のコメント:

コメントを投稿