間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

二項分布(binomial distribution)からポアソン分布(Poisson distribution)を導く

二項分布 $B(n, p)$

$$B(n, p) = f_X(x) = \begin{cases} \displaystyle _nC_x\,p^x(1-p)^{n-x} & \quad x \in \left\{0,1,2, \dotsc ,n\right\}\\ \displaystyle 0 & \quad x \notin \left\{0,1,2, \dotsc ,n\right\} \end{cases} $$

$_nC_x$の展開と変形

$$\begin{array}{rcl} \displaystyle _nC_x&=&\displaystyle \frac{n!}{x!(n-x)!}\\ &=&\displaystyle \frac{1}{x!}\frac{n!}{(n-x)!}\\ &=&\displaystyle \frac{1}{x!}n(n-1)(n-2)\dotsm(n-x+1)\\ &=&\displaystyle \frac{1}{x!}\{\frac{n\,n}{n}\frac{n\,(n-1)}{n}\frac{n\,(n-2)}{n}\dotsm\frac{n\,(n-x+1)}{n}\}\\ &=&\displaystyle \frac{1}{x!}n^x\{\frac{n}{n}\frac{(n-1)}{n}\frac{(n-2)}{n}\dotsm\frac{(n-x+1)}{n}\}\\ &=&\displaystyle \frac{n^x}{x!}\{\frac{n}{n}(\frac{n}{n}-\frac{1}{n})(\frac{n}{n}-\frac{2}{n})\dotsm(\frac{n}{n}-\frac{x-1}{n})\}\\ &=&\displaystyle \frac{n^x}{x!}\{1(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{x-1}{n})\}\\ &=&\displaystyle \frac{n^x}{x!}\{(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{x-1}{n})\}\\ \end{array}$$

$(1-p)^{n-x}$の展開と変形

$$\begin{array}{rcl} \displaystyle (1-p)^{n-x}&=&\displaystyle (1-p)^n(1-p)^{-x}\\ &=&\displaystyle \left[\left[\{1+(-p)\}^{\frac{1}{-p}}\right]^{-p}\right]^n(1-p)^{-x} \,\dotso\,a=(a^\frac{1}{x})^{x}\\ &=&\displaystyle \{\left(\mathrm{e}\right)^{-p}\}^n(1-p)^{-x} \,\dotso\,\left(1+x\right)^{\frac{1}{x}}=\left(1+\frac{1}{y}\right)^{y}=\mathrm{e}\\ &=&\displaystyle \mathrm{e}^{-np}(1-p)^{-x}\,\dotso\,\left(a^x\right)^y=a^{xy}\\ \end{array}$$

展開と変形の結果を当てはめる

$$\begin{array}{rcl} \displaystyle _nC_x\,p^x(1-p)^{n-x}&=&\displaystyle \frac{n^x}{x!}\{(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{k-1}{n})\}p^x\mathrm{e}^{-np}(1-p)^{-x}\\ &=&\displaystyle \frac{1}{x!}\{(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{k-1}{n})\}n^{x}p^x\mathrm{e}^{-np}(1-p)^{-x}\\ &=&\displaystyle \frac{1}{x!}\{(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{k-1}{n})\}(np)^{x}\mathrm{e}^{-np}(1-p)^{-x}\\ \end{array}$$

$\lambda=np$,$\lambda$を一定に$n$を十分大きくとると, $p$は極めて小さくなる

$$\begin{array}{rcl} \displaystyle f_X(x)&=&\displaystyle \frac{1}{x!}\{(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{k-1}{n})\}(np)^{x}\mathrm{e}^{-np}(1-p)^{-x}\\ &=&\displaystyle \frac{1}{x!}\{(1-\frac{1}{n})(1-\frac{2}{n})\dotsm(1-\frac{k-1}{n})\}(\lambda)^{x}\mathrm{e}^{-\lambda}(1-p)^{-x}\,\dotso\,\lambda=np\\ &=&\displaystyle \frac{1}{x!}\{(1)(1)\dotsm(1)\}(\lambda)^{x}\mathrm{e}^{-\lambda}(1)^{-x}\,\dotso\,\frac{C}{n}\to 0, p\to 0\\ &=&\displaystyle \frac{1}{x!}\lambda^{x}\mathrm{e}^{-\lambda}\\ &=&\displaystyle \frac{\lambda^{x}}{x!}\mathrm{e}^{-\lambda}\\ &=&\displaystyle Po(\lambda)\\ \end{array}$$

積率母凾数(moment-generating function)を考える

$$\begin{array}{rcl} \displaystyle M_X(t)&\equiv&\displaystyle E[\mathrm{e}^{tX}]\\ &=&\displaystyle \sum_{x=0}^{\infty}(\mathrm{e}^{tx})\frac{\lambda^{x}}{x!}\mathrm{e}^{-\lambda}\\ &=&\displaystyle \mathrm{e}^{-\lambda}\sum_{x=0}^{\infty}(\mathrm{e}^{tx})\frac{\lambda^{x}}{x!}\\ &=&\displaystyle \mathrm{e}^{-\lambda}\sum_{x=0}^{\infty}\frac{\mathrm{e}^{tx}\lambda^{x}}{x!}\\ &=&\displaystyle \mathrm{e}^{-\lambda}\sum_{x=0}^{\infty}\frac{(\mathrm{e}^{t}\lambda)^{x}}{x!}\\ &=&\displaystyle \mathrm{e}^{-\lambda}\mathrm{e}^{\mathrm{e}^{t}\lambda} \,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/blog-post.html}{\sum_{x=0}^{\infty}\frac{a^{x}}{x!}=\mathrm{e}^a}\\ &=&\displaystyle \mathrm{e}^{\mathrm{e}^{t}\lambda-\lambda}=\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)} \end{array}$$

期待値,分散

$$\begin{array}{rcl} \displaystyle M_X^{(m)}(0)&\equiv&\frac{ \mathrm{d}^m }{ \mathrm{d}^m t } M_x(t)|_{t=0}\\ &=&\displaystyle E[X^m\mathrm{e}^{tX}]|_{t=0}\\ &=&\displaystyle E[X^m]\\ \end{array}$$ $$\begin{array}{rcl} \displaystyle E[X]&=&\displaystyle M_X^1(0)\\ &=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t }(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)}) \right\}|_{t=0}\\ &=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} s }(\mathrm{e}^{s})\frac{ \mathrm{d}s}{ \mathrm{d}t} \right\}|_{t=0} \,\dotso\,s=\lambda(\mathrm{e}^{t}-1),\frac{ \mathrm{d}s}{ \mathrm{d}t}=\lambda\mathrm{e}^{t}\\ &=&\displaystyle \left\{ (\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)})(\lambda\mathrm{e}^{t}) \right\}|_{t=0} \,\dotso\,\frac{ \mathrm{d} }{ \mathrm{d} x }\mathrm{e}^{x}=\mathrm{e}^{x}\\ &=&\displaystyle \left\{ \lambda(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)+t}) \right\}|_{t=0}\\ &=&\displaystyle \lambda(\mathrm{e}^{\lambda(\mathrm{e}^{0}-1)+0})\\ &=&\displaystyle \lambda\mathrm{e}^0 \,\dotso\,a^0=1\\ &=&\lambda \,\dotso\,a^0=1\\ \end{array}$$ $$\begin{array}{rcl} \displaystyle E[X^2]&=&\displaystyle M_X^2(0)\\ &=&\displaystyle \left\{ \frac{ \mathrm{d}^2 }{ \mathrm{d} t^2 }(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)}) \right\}|_{t=0}\\ &=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} t } \lambda(\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)+t}) \right\}|_{t=0} \,\dotso\,E[X]の展開から.\\ &=&\displaystyle \left\{ \frac{ \mathrm{d} }{ \mathrm{d} s }(\lambda\mathrm{e}^{s})\frac{ \mathrm{d}s}{ \mathrm{d}t} \right\}|_{t=0} \,\dotso\,s=\lambda(\mathrm{e}^{t}-1)+t,\frac{ \mathrm{d}s}{ \mathrm{d}t}=\lambda\mathrm{e}^{t}+1\\ &=&\displaystyle \left\{ (\lambda\mathrm{e}^{\lambda(\mathrm{e}^{t}-1)+1})(\lambda\mathrm{e}^{t}+1) \right\}|_{t=0} \,\dotso\,\frac{ \mathrm{d} }{ \mathrm{d} x }C\mathrm{e}^{x}=C\mathrm{e}^{x}\\ &=&\displaystyle (\lambda\mathrm{e}^{\lambda(\mathrm{e}^{0}-1)+1})(\lambda\mathrm{e}^{0}+1)\\ &=&\displaystyle \lambda\mathrm{e}^0(\lambda+1) \,\dotso\,a^0=1\\ &=&\lambda(\lambda+1) \,\dotso\,a^0=1\\ \end{array}$$ $$\begin{array}{rcl} \displaystyle V[X]&=&\displaystyle E[X^2]-E[X]^2\\ &=&\lambda(\lambda+1)-\lambda^2\\ &=&\lambda^2+\lambda-\lambda^2\\ &=&\lambda\\ \end{array}$$

0 件のコメント:

コメントを投稿