間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

式を回転させてから積分する

凾数 f f(x) = x² 凾数 g g(x) = x 凾数 h h: y = 1 / 2 (2x - sqrt(8sqrt(2) x + 2) + sqrt(2)) 凾数 h_1 h_1: y = 1 / 2 (2x + sqrt(8sqrt(2) x + 2) + sqrt(2)) 直線 i i: y = 0 不等式 a 不等式 a: g(x) > y > f(x) 不等式 a 不等式 a: g(x) > y > f(x) 不等式 a 不等式 a: g(x) > y > f(x) 不等式 b 不等式 b: i(x) > y > h(x) 不等式 b 不等式 b: i(x) > y > h(x) 不等式 b 不等式 b: i(x) > y > h(x) 不等式 b 不等式 b: i(x) > y > h(x) y=x^2 text1 = “y=x^2” y=x^2 text1 = “y=x^2” y=x^2 text1 = “y=x^2” y=x^2 text1 = “y=x^2” y=x text2 = “y=x” y=x text2 = “y=x” y=x text2 = “y=x” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=xを-\frac{\pi}{4}回転したもの text3 = “y=xを-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの” y=x^2を-\frac{\pi}{4}回転したもの text3_1 = “y=x^2を-\frac{\pi}{4}回転したもの”

\(区間\;0\leq x \leq 1 において y=xとy=x^2で囲まれた領域をy=xを軸として回転させた時の体積\)

\(y=x,\;y=x^2\)を\(-\frac{\pi}{4}\)回転させる

求めたい\(-\frac{\pi}{4}\)回転させた側を\((x, y)\)とすると,それを\(\frac{\pi}{4}\)回転させた結果として\((X,Y)\)として考える. $$\begin{eqnarray} \begin{bmatrix} X \\ Y \end{bmatrix} &=& \begin{bmatrix} \cos{\left(\frac{\pi}{4}\right)} & -\sin{\left(\frac{\pi}{4}\right)} \\ \sin{\left(\frac{\pi}{4}\right)} & \cos{\left(\frac{\pi}{4}\right)} \end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} \\&=& \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} \\&=& \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} \end{eqnarray}$$ $$\left\{\begin{eqnarray} X&=&\frac{\sqrt{2}}{2}\left(x-y\right) \\Y&=&\frac{\sqrt{2}}{2}\left(x+y\right) \end{eqnarray}\right.$$ $$\left\{\begin{eqnarray} X&=&\alpha\left(x-y\right) \\Y&=&\alpha\left(x+y\right) \end{eqnarray}\right.\;\cdots\;\alpha=\frac{\sqrt{2}}{2}$$ $$\begin{eqnarray} f&=&Y-X \\&=&\alpha\left(x+y\right)-\left\{\alpha\left(x-y\right)\right\} \\&=&\alpha\left(x+y-x+y\right) \\&=&\alpha2y \\&=&\sqrt{2}y \\f(y)&=&0 \\\sqrt{2}y&=&0 \\y&=&\frac{0}{\sqrt{2}}=0\;\cdots\;X軸 \\ \\g&=&Y-X^2 \\&=&\alpha\left(x+y\right)-\left\{\alpha\left(x-y\right)\right\}^2 \\&=&\alpha\left(x+y\right)-\alpha^2\left(x^2-2xy+y^2\right) \\&=&\alpha x+\alpha y-\alpha^2x^2+2\alpha^2xy-\alpha^2y^2 \\&=&-\alpha^2y^2+\left(\alpha+2\alpha^2x\right)y+\left(\alpha x-\alpha^2 x^2\right) \\g(y)&=&0 \\y&=&\frac{-\left(\alpha+2\alpha^2x\right)\pm\sqrt{\left(\alpha+2\alpha^2x\right)^2-4\cdot\left(-\alpha^2\right)\cdot\left(\alpha x-\alpha^2 x^2\right)}}{2\left(-\alpha^2\right)} \\&=&\frac{-\alpha\left(1+2\alpha x\right)\pm\sqrt{\alpha^2+4\alpha^3x\cancel{+4\alpha^4x^2}+4\alpha^3x\cancel{-4\alpha^3 x}}}{-2\alpha^2} \\&=&\frac{-\alpha\left(1+2\alpha x\right)\pm\sqrt{\alpha^2+8\alpha^3 x}}{-2\alpha^2} \\&=&\frac{-\alpha\left(1+2\alpha x\right)\pm\sqrt{\alpha^2\left(1+8\alpha x\right)}}{-2\alpha^2} \\&=&\frac{-\alpha\left(1+2\alpha x\right)\pm\alpha\sqrt{1+8\alpha x}}{-2\alpha^2} \\&=&\frac{\left(1+2\alpha x\right)\pm\sqrt{1+8\alpha x}}{2\alpha} \\&=&\frac{1+2\alpha x\pm\sqrt{1+8\alpha x}}{2\alpha} \\&=&\frac{1}{2\alpha}+\frac{2\alpha x}{2\alpha}\pm\frac{\sqrt{1+8\alpha x}}{2\alpha} \\&=&\frac{1}{2\alpha}+x\pm\frac{\sqrt{1+8\alpha x}}{2\alpha} \\&=&\frac{1}{2\frac{\sqrt{2}}{2}}+x\pm\frac{\sqrt{1+8\frac{\sqrt{2}}{2} x}}{2\frac{\sqrt{2}}{2}} \\&=&\frac{1}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}}+x\pm\frac{\sqrt{1+4\sqrt{2} x}}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \\&=&\frac{\sqrt{2}}{2}+x\pm\frac{\sqrt{2}\sqrt{1+4\sqrt{2} x}}{2} \\&=&\frac{\sqrt{2}}{2}+x\pm\frac{\sqrt{2\left(1+4\sqrt{2} x\right)}}{2} \\&=&\frac{\sqrt{2}}{2}+x\pm\frac{\sqrt{2+8\sqrt{2} x}}{2} \end{eqnarray}$$ \(区間\;0\leq x \leq 1における回転軸y=xの長さは\sqrt{2}.\) \(これより,-\frac{\pi}{4}回転させた後は,区間0から\sqrt{2}を扱うことになる.\)
\(x=0\)のとき\(+\)側の式は $$\begin{eqnarray} \left.\frac{\sqrt{2}}{2}+x+\frac{\sqrt{2+8\sqrt{2} x}}{2}\right|_{x=0}&=&\frac{\sqrt{2}}{2}+0+\frac{\sqrt{2+8\sqrt{2}\cdot0}}{2} \\&=&\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \\&=&\sqrt{2}\gt0 \end{eqnarray}$$ \(-\)側の式は $$\begin{eqnarray} \left.\frac{\sqrt{2}}{2}+x-\frac{\sqrt{2+8\sqrt{2} x}}{2}\right|_{x=0}&=&\frac{\sqrt{2}}{2}+0-\frac{\sqrt{2+8\sqrt{2}\cdot0}}{2} \\&=&\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \\&=&0 \end{eqnarray}$$ であり,\(x=0\)で\(y=0\)となる,原点を通る\(-\)側の式をここでは用いる.
ちなみに,第三項の分子の平方根内の値が非負となる区間は $$\begin{eqnarray} 2+8\sqrt{2} x &\geq&0 \\8\sqrt{2} x&\geq&-2 \\x&\geq&-\frac{2}{8\sqrt{2} } \\x&\geq&-\frac{1}{4\sqrt{2}} \end{eqnarray}$$ \( x\geq-\frac{1}{4\sqrt{2}}\)となり,特に問題ない.

\(f-g\)となる領域をX軸まわりに回転させた体積を求める

$$\begin{eqnarray} V&=&2\pi\int_0^{\sqrt{2}} \left[0 - \left(x+\frac{\sqrt{2}}{2}-\frac{\sqrt{2+8\sqrt{2} x}}{2}\right)\right]^2\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left(-x-\frac{\sqrt{2}}{2}+\frac{\sqrt{2+8\sqrt{2} x}}{2}\right)^2\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ -x\left(-x-\frac{\sqrt{2}}{2}+\frac{\sqrt{2+8\sqrt{2} x}}{2}\right) +\frac{-\sqrt{2}}{2}\left(-x-\frac{\sqrt{2}}{2}+\frac{\sqrt{2+8\sqrt{2} x}}{2}\right) +\frac{\sqrt{2+8\sqrt{2} x}}{2}\left(-x-\frac{\sqrt{2}}{2}+\frac{\sqrt{2+8\sqrt{2} x}}{2}\right) \right\}\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ x^2+x\frac{\sqrt{2}}{2}-x\frac{\sqrt{2+8\sqrt{2} x}}{2} +\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}\frac{\sqrt{2}}{2}+\frac{-\sqrt{2}}{2}\frac{\sqrt{2+8\sqrt{2} x}}{2} -\frac{\sqrt{2+8\sqrt{2} x}}{2}x-\frac{\sqrt{2+8\sqrt{2} x}}{2}\frac{\sqrt{2}}{2}+\frac{\sqrt{2+8\sqrt{2} x}}{2}\frac{\sqrt{2+8\sqrt{2} x}}{2} \right\}\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ x^2 -2x\frac{\sqrt{2+8\sqrt{2} x}}{2} -2\frac{\sqrt{2}}{2}\frac{\sqrt{2+8\sqrt{2} x}}{2} +\left(\frac{\sqrt{2+8\sqrt{2} x}}{2}\right)^2 +2\frac{\sqrt{2}}{2}x +\left(\frac{\sqrt{2}}{2}\right)^2 \right\}\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ x^2 -x\sqrt{2+8\sqrt{2} x} -\frac{\sqrt{2}}{2}\sqrt{2+8\sqrt{2}} x +\frac{2+8\sqrt{2} x}{4} +\sqrt{2}x +\frac{2}{4} \right\}\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ x^2 -x\sqrt{2+8\sqrt{2} x} -\frac{\sqrt{2}}{2}\sqrt{2+8\sqrt{2}} x +\frac{2}{4} +\frac{8\sqrt{2} x}{4} +\sqrt{2}x +\frac{1}{2} \right\}\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ x^2 -x\sqrt{2+8\sqrt{2} x} -\frac{\sqrt{2}}{2}\sqrt{2+8\sqrt{2}} x +2\sqrt{2} x +\sqrt{2}x +\frac{1}{2} +\frac{1}{2} \right\}\mathrm{d}x \\&=&2\pi\int_0^{\sqrt{2}}\left\{ x^2 -x\sqrt{2+8\sqrt{2} x} -\frac{\sqrt{2}}{2}\sqrt{2+8\sqrt{2}} x +3\sqrt{2} x +1 \right\}\mathrm{d}x \\&=&2\pi\left[ \int_0^{\sqrt{2}}x^2\mathrm{d}x -\int_0^{\sqrt{2}}x\sqrt{2+8\sqrt{2} x}\mathrm{d}x -\frac{\sqrt{2}}{2}\int_0^{\sqrt{2}}\sqrt{2+8\sqrt{2} x}\mathrm{d}x +3\sqrt{2} \int_0^{\sqrt{2}}x\mathrm{d}x +\int_0^{\sqrt{2}}\mathrm{d}x \right] \\&=&2\pi\left( \frac{2}{3}\sqrt{2} -\frac{149}{60}\sqrt{2} -\frac{\sqrt{2}}{2}\cdot\frac{13}{3} +3\sqrt{2}\cdot1 +\sqrt{2} \right) \\&=&2\pi\left(\frac{2}{3}-\frac{149}{60}-\frac{13}{6}+4\right)\sqrt{2} \\&=&2\pi\frac{40-149-130+240}{60}\sqrt{2} \\&=&2\pi\frac{\sqrt{2}}{60} \\&=&\frac{\pi\sqrt{2}}{30} \end{eqnarray}$$

個々の積分について

$$\begin{eqnarray} \int_0^{\sqrt{2}}\mathrm{d}x&=&\left[x\right]_0^{\sqrt{2}} \\&=&\left[\sqrt{2}-0 \right] \\&=&\sqrt{2} \end{eqnarray}$$ $$\begin{eqnarray} \int_0^{\sqrt{2}}x\mathrm{d}x&=&\left[\frac{1}{2}x^2\right]_0^{\sqrt{2}} \\&=&\left[\frac{1}{2}\sqrt{2}^2-\frac{1}{2}0^2 \right] \\&=&\left[1-0\right] \\&=&1 \end{eqnarray}$$ $$\begin{eqnarray} \int_0^{\sqrt{2}}\sqrt{2+8\sqrt{2} x}\mathrm{d}x \\&=&\frac{1}{8\sqrt{2}}\int_2^{18}\sqrt{u}\mathrm{d}u\;\cdots\;u=2+8\sqrt{2} x,\;\frac{\mathrm{d}u}{\mathrm{d}x}=8\sqrt{2},\;\mathrm{d}x=\frac{1}{8\sqrt{2}}\mathrm{d}u,\;x=0\rightarrow t=2,\;x=\sqrt{2}\rightarrow t=18 \\&=&\frac{1}{8\sqrt{2}}\left[\frac{1}{\frac{1}{2}+1}u^{\frac{1}{2}+1}\right]_2^{18} \\&=&\frac{1}{8\sqrt{2}}\left[\frac{1}{\frac{3}{2}}u^{\frac{3}{2}}\right]_2^{18} \\&=&\frac{1}{8\sqrt{2}}\left[\frac{2}{3}u^{\frac{3}{2}}\right]_2^{18} \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left[u^{\frac{3}{2}}\right]_2^{18} \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left[18^{\frac{3}{2}}-2^{\frac{3}{2}}\right] \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left(18\cdot18^{\frac{1}{2}}-2\cdot2^{\frac{1}{2}}\right) \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left(18\cdot\left(3^2\cdot2\right)^{\frac{1}{2}}-2\cdot2^{\frac{1}{2}}\right) \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left(18\cdot3\cdot2^{\frac{1}{2}}-2\cdot2^{\frac{1}{2}}\right) \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left(54\cdot2^{\frac{1}{2}}-2\cdot2^{\frac{1}{2}}\right) \\&=&\frac{1}{8\sqrt{2}}\frac{2}{3}\left(54-2\right)\cdot2^{\frac{1}{2}} \\&=&\frac{1}{8\sqrt{2}}\frac{2\cdot52}{3}\sqrt{2} \\&=&\frac{1}{8\sqrt{2}}\frac{104}{3}\sqrt{2}\;\cdots\;\int_2^{18}\sqrt{u}\mathrm{d}u=\frac{104}{3}\sqrt{2} \\&=&\frac{104}{24} \\&=&\frac{13}{3} \end{eqnarray}$$ $$\begin{eqnarray} \int_0^{\sqrt{2}}x\sqrt{2+8\sqrt{2} x}\mathrm{d}x \\&=&\frac{1}{8\sqrt{2}}\int_2^{18}\frac{u-2}{8\sqrt{2}}\sqrt{u}\mathrm{d}u\;\cdots\;u=2+8\sqrt{2} x,\;\frac{\mathrm{d}u}{\mathrm{d}x}=8\sqrt{2},\;\mathrm{d}x=\frac{1}{8\sqrt{2}}\mathrm{d}u,\;x=0\rightarrow t=2,\;x=\sqrt{2}\rightarrow t=18,\;x=\frac{u-2}{8\sqrt{2}} \\&=&\frac{1}{8\sqrt{2}}\frac{1}{8\sqrt{2}}\int_2^{18}\left(u-2\right)\sqrt{u}\mathrm{d}u \\&=&\frac{1}{128}\int_2^{18}\left(u\sqrt{u}-2\sqrt{u}\right)\mathrm{d}u \\&=&\frac{1}{128}\int_2^{18}\left(u^{\frac{3}{2}}-2u^{\frac{1}{2}}\right)\mathrm{d}u \\&=&\frac{1}{128}\int_2^{18}u^{\frac{3}{2}}\mathrm{d}u-\frac{2}{128}\int_2^{18}u^{\frac{1}{2}}\mathrm{d}u \\&=&\frac{1}{128}\left[\frac{1}{\frac{3}{2}+1}u^{\frac{3}{2}+1}\right]_2^{18} -\frac{1}{64}\frac{104}{3}\sqrt{2}\;\cdots\;\int_2^{18}\sqrt{u}\mathrm{d}u=\frac{104}{3}\sqrt{2}, 前述の積分結果より \\&=&\frac{1}{128}\left[\frac{1}{\frac{5}{2}}u^{\frac{5}{2}}\right]_2^{18} -\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}\left[u^{\frac{5}{2}}\right]_2^{18} -\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}\left[18^{\frac{5}{2}}-2^{\frac{5}{2}}\right]-\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}\left[18^2\cdot18^{\frac{1}{2}}-2^2\cdot2^{\frac{1}{2}}\right]-\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}\left[18^2\cdot(3^2\cdot2)^{\frac{1}{2}}-2^2\cdot2^{\frac{1}{2}}\right]-\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}\left[18^2\cdot3\cdot2^{\frac{1}{2}}-2^2\cdot2^{\frac{1}{2}}\right]-\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}\left[(18^2\cdot3-2^2)\cdot2^{\frac{1}{2}}\right]-\frac{13}{24}\sqrt{2} \\&=&\frac{1}{128}\frac{2}{5}968\sqrt{2}-\frac{13}{24}\sqrt{2} \\&=&\frac{121}{40}\sqrt{2}-\frac{13}{24}\sqrt{2} \\&=&\frac{121\cdot3-13\cdot5}{120}\sqrt{2} \\&=&\frac{363-65}{120}\sqrt{2} \\&=&\frac{298}{120}\sqrt{2} \\&=&\frac{149}{60}\sqrt{2} \end{eqnarray}$$ $$\begin{eqnarray} \int_0^{\sqrt{2}}x^2\mathrm{d}x&=&\left[\frac{1}{3}x^3\right]_0^{\sqrt{2}} \\&=&\left[\frac{1}{3}\sqrt{2}^3-\frac{1}{3}0^3 \right] \\&=&\left[\frac{1}{3}\sqrt{2}^3-0\right] \\&=&\frac{1}{3}\sqrt{2}^3 \\&=&\frac{2}{3}\sqrt{2} \end{eqnarray}$$