間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バーゼル問題

オリジナル: https://youtu.be/6olRd_dDS80

準備1.2nAn=(2n1)An1

An=0π2cos2n(x)dx=0π2cos(x)cos2n1(x)dx=[sin(x)cos2n1(x)]0π20π2sin(x){(2n1)cos2n2(x)sin(x)}dx(fg)=fg+fg,fg=(fg)fg,fg=(fg)fg,fg=[fg]fgf(x)=cos(x)f(x)=sin(x)g(x)=cos2n1(x)=u2n1(x)u=cos(x)g(x)=dgdx=dgdududx=(2n1)u2n2(x)(sin(x))=(2n1)cos2n2(x)sin(x)=[00]+(2n1)0π2sin2(x)cos2n2(x)dx=(2n1)0π2(1cos2(x))cos2n2(x)dx=(2n1)0π2(cos2n2(x)cos2n(x))dx=(2n1)0π2cos2(n1)(x)dx(2n1)0π2cos2n(x)dx=(2n1)An1(2n1)AnAn+(2n1)An=(2n1)An12nAn=(2n1)An1

準備2.An=(2n1)nBn12n2Bn

An=0π2cos2n(x)dx=[xcos2n(x)]0π20π2x{2ncos2n1(x)(sin(x))}dx(fg)=fg+fg,fg=(fg)fg,fg=(fg)fg,fg=[fg]fgf(x)=1f(x)=xg(x)=cos2n(x)=u2nu=cos(x)g(x)=dgdx=dgdududx=2nu2n1(sin(x))=2ncos2n1(x)(sin(x))=[00]+2n0π2xsin(x)cos2n1(x)dx=2n0π2xsin(x)cos2n1(x)dx=2n[[12x2sin(x)cos2n1(x)]0π20π212x2{cos(x)cos2n1(x)+sin(x)(2n1)cos2n2(x)(sin(x))}dx]=2n120π2x2{cos2n(x)(2n1)sin2(x)cos2n2(x)}dx=n0π2[x2cos2n(x)(2n1)x2{1cos2(x)}cos2n2(x)]dx=n0π2[x2cos2n(x)(2n1)x2{cos2n2(x)cos2(x)cos2n2(x)}]dx=n0π2[x2cos2n(x)(2n1)x2{cos2n2(x)cos2n(x)}]dx=n0π2{x2cos2n(x)(2n1)x2cos2n2(x)+(2n1)x2cos2n(x)}dx=n0π2{(2n1)x2cos2n2(x)+2nx2cos2n(x)}dx=n0π2(2n1)x2cos2(n1)(x)dxn0π22nx2cos2n(x)dx=(2n1)n0π2x2cos2(n1)(x)dx2n20π2x2cos2n(x)dx=(2n1)nBn12n2BnBn=0π2x2cos2n(x)dx

準備3.limnBnAn=0

Bn=0π2x2cos2n(x)dx0π2{π2sin(x)}2cos2n(x)dx2πxsin(x)x[0,π2]xπ2sin(x)(0,0)(π2,1)2πx[0,π2]sin(x)()=π240π2sin2(x)cos2n(x)dx=π240π2sin2(x)cos2n(x)dx=π240π2{1cos2(x)}cos2n(x)dx=π240π2{1cos2(x)}cos2n(x)dx=π240π2{cos2n(x)cos2n+2(x)}dx=π24[0π2cos2n(x)dx0π2cos2(n+1)(x)dx]=π24(AnAn+1)=π24(An2(n+1)12(n+1)An)=π24(2(n+1){2(n+1)1}2(n+1)An)=π24(2(n+1)2(n+1)+12(n+1)An)=π24(12(n+1)An)=π24An2(n+1)Bnπ24An2(n+1)Bn1Anπ24An2(n+1)1AnAn0BnAnπ2412(n+1)limnBnAnlimnπ2412(n+1)=0limnBnAn0An,Bn(cos2n(x),x2cos2n(x))00limnBnAn=020

n=11n2

n=11n2=limNn=1N1n2=limNn=1N{(2n1)Bn1nAn2BnAn}An=(2n1)nBn12n2Bn(2)Ann2=(2n1)nBn1n22n2Bnn2Ann2=(2n1)Bn1n2Bn1n2=(2n1)Bn1nAn2BnAn=limNn=1N2Bn1An12BnAn2nAn=(2n1)An1(1)2An1nAn=(2n1)2An1=(2n1)nAn=2limNn=1NBn1An1BnAn=2limN{(B11A11B1A1)+(B21A21B2A2)+(B31A31B3A3)++(BN1AN1BNAN)}=2limN{B0A0B1A1+B1A1B2A2+B2A2B3A3+++BN1AN1BNAN}TelescopingSeries=2(B0A0limNBNAN)=2(B0A00)limnBnAn=0(3)=2B0A0=20π2x2cos2n(x)dx0π2cos2n(x)dx|n=0=20π2x2cos20(x)dx0π2cos20(x)dx=20π2x2dx0π2dx=2[13x3]0π2[x]0π2=2[13(π2)31303][π20]=2π324π2=2π212=π26