間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

水準Lと繰返しRが有る標本平均周りの平方和の式展開

水準と繰返しが有る標本平均周りの平方和の式展開(分解あり)

L:水準, R:繰返し $$\begin{eqnarray} \sum_{n=1}^{N}{(x_{n}-\bar{x})^2} &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}-\bar{x})^2}&&\dots L:水準, R:繰返し, N=LR \\&=&\sum_{l=1}^{L}\sum_{r=1}^{R}{(\bar{x_{l}}-\bar{x})^2} &+\sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}-\bar{x_{l}})^2} &\dots \sum_{l=1}^{L}\sum_{r=1}^{R}{(\bar{x_{l}}-\bar{x})^2}:各水準平均と全体平均の 差の平方和, \sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}-\bar{x_{l}})^2}:各値と各水準との差の平方和\\ &=&R\sum_{l=1}^{L}{(\bar{x_{l}}^2-2\bar{x_{l}}\bar{x}+\bar{x}^2)} &+\sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}^2-2x_{lr}\bar{x_{l}}+\bar{x_{l}}^2)} &\dots (a-b)^2=a^2-2ab+b^2\\ &=&R\sum_{l=1}^{L}{\bar{x_{l}}^2}-R\sum_{l=1}^{L}{2\bar{x_{l}}\bar{x}}+R\sum_{l=1}^{L}{\bar{x}^2} &+\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-\sum_{l=1}^{L}\sum_{r=1}^{R}{2x_{lr}\bar{x_{l}}}+\sum_{l=1}^{L}\sum_{r=1}^{R}{\bar{x_{l}}^2} &\dots \sum_{k=1}^{K}{(x_k+y_k)}=\sum_{k=1}^{K}{x_k}+\sum_{k=1}^{K}{y_k}\\ &=&R\sum_{l=1}^{L}{\bar{x_{l}}^2}-2R\bar{x}\sum_{l=1}^{L}{\bar{x_{l}}}+R\bar{x}^2\sum_{l=1}^{L}{1} &+\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-2\sum_{l=1}^{L}{(\bar{x_{l}}\sum_{r=1}^{R}{x_{lr}})}+\sum_{l=1}^{L}{(\bar{x_{l}}^2\sum_{r=1}^{R}{1})} &\dots \sum_{k=1}^{K}{Cx_k}=C\sum_{k=1}^{K}{x_k}\\ &=&R\sum_{l=1}^{L}{\bar{x_{l}}^2}-2R\bar{x}L\bar{x}+R\bar{x}^2L &+\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-2\sum_{l=1}^{L}{(\bar{x_{l}}R\bar{x_{l}})}+\sum_{l=1}^{L}{\bar{x_{l}}^2R} &\dots \sum_{k=1}^{K}{1}=K, \bar{x}:=\frac{\sum_{k=1}^{K}{x_k}}{K} \rightarrow \sum_{k=1}^{K}{x_k}=K\bar{x}\\ &=&R\sum_{l=1}^{L}{\bar{x_{l}}^2}-2LR\bar{x}^2+LR\bar{x}^2 &+\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-2R\sum_{l=1}^{L}{\bar{x_{l}}^2}+R\sum_{l=1}^{L}{\bar{x_{l}}^2}\\ &=&\color{red}{R\sum_{l=1}^{L}{\bar{x_{l}}^2}}\color{black}{-LR\bar{x}^2} &+\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}\color{red}{-R\sum_{l=1}^{L}{\bar{x_{l}}^2}}\\ &=&-LR\bar{x}^2 &+\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-LR\bar{x}^2\\ &=&\sum_{n=1}^{N}{x_{n}^2}-N\bar{x}^2&\dots LR=N\\ \end{eqnarray}$$

水準と繰返しが有る標本平均周りの平方和の式展開(分解なし)

$$\begin{eqnarray} \sum_{n=1}^{N}{(x_{n}-\bar{x})^2} &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}-\bar{x})^2}\dots L:水準, R:繰返し, N=LR\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}^2-2x_{lr}\bar{x}+\bar{x}^2)}\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-\sum_{l=1}^{L}\sum_{r=1}^{R}{2x_{lr}\bar{x}}+\sum_{l=1}^{L}\sum_{r=1}^{R}{\bar{x}^2}\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-2\bar{x}\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}}+\bar{x}^2\sum_{l=1}^{L}\sum_{r=1}^{R}{1}\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-2\bar{x}LR\bar{x}+\bar{x}^2LR\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-2LR\bar{x}^2+LR\bar{x}^2\\ &=&\sum_{l=1}^{L}\sum_{r=1}^{R}{x_{lr}^2}-LR\bar{x}^2\\ &=&\sum_{n=1}^{N}{x_{n}^2}-N\bar{x}^2&\dots LR=N\\ &=&\sum_{n=1}^{N}{x_{n}^2}-N(\frac{\sum_{n=1}^{N}{x_{n}}}{N})^2\\ &=&\sum_{n=1}^{N}{x_{n}^2}-\frac{1}{N}(\sum_{n=1}^{N}{x_{n}})^2\\ &=&\sum_{n=1}^{N}{x_{n}^2}-\frac{1}{N}(N\bar{x})^2\\ &=&\sum_{n=1}^{N}{x_{n}^2}-\frac{1}{N}N^2\bar{x}^2\\ &=&\sum_{n=1}^{N}{x_{n}^2}-N\bar{x}^2\\ \end{eqnarray}$$

各水準平均と全体平均の差の平方和と各値と各水準との差の平方和に分解できること

以上より分解有りと無しで同じ値になることから,\(\sum_{n=1}^{N}{(x_{n}-\bar{x})^2}=\sum_{l=1}^{L}\sum_{r=1}^{R}{(x_{lr}-\bar{x})^2}\)は\(\sum_{l=1}^{L}\sum_{r=1}^{R}{(\bar{x_{l}}-\bar{x})^2}\)と\( \sum_{l=1}^{L}\sum_{r=1}^{R}{ (x_{lr}-\bar{x_{l}})^2 } \)に分解できることがわかる.